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I. Introduction 

This report is the fourth and final deliverable of the IEA-funded research project “Using Neural 

Network Classification for the Automated Scoring of Image Responses in TIMSS 2023”. In this 

report, we describe the code optimization process, open source and public domain tools used in 

neural network modeling and identify TIMSS 2023 items that can be scored with artificial neural 

networks (Activity 3, from July 1st to October 31st, 2022). Moreover, a list of conference proposals 

and journal articles related to the work completed during this project is provided (Activity 4, from 

June 1st to October 31st 2022). Finally, an example workflow is provided in the appendix to 

illustrate the R code used for modeling.  

The genesis of this research project dates back to a pilot study conducted in 2020 at the TIMSS & 

PIRLS International Study Center to see whether artificial intelligence could be used to validate 

human scoring of graphical responses. At the time, artificial neural networks (ANNs) were applied 

to one released item from the TIMSS 2019 Problem Solving and Inquiry (PSI) “Building” task. 

This trichotomous item asked students to draw the back wall and sides of a shed on a grid according 

to given specifications. It was found that the ANN validation technique achieved up to 97.53% 

agreement with the human raters and the AI models correctly classified 193 responses that were 

incorrectly classified by human raters, indicating that ANNs can help identify mistakes and 

inconsistencies in human scoring as well. 

This IEA-funded research project aimed to extend the ANN validation technique to eight 

additional TIMSS 2019 graphical response items to see how the neural networks would perform 

across a variety of different tasks and possible response outcomes (Activity 2, from January 1st to 

June 30th 2022) and to implement the procedure operationally in TIMSS 2023 (Activity 3). It was 

found that the ANN technique was extremely successful when applied to the non-PSI items, with 

the most accurate models classifying over 99% of the image responses into the appropriate scoring 

category for dichotomous items, and almost 98% for one trichotomous item. Additionally, the 

models correctly classified a number of image responses that had been incorrectly scored by human 

raters, with most of the items having a higher number of incorrectly human-scored responses than 

responses misclassified by the ANNs.  

These results indicate that automated scoring using ANNs is comparable to, and in many cases 

more accurate, than human raters, and that the validation technique could be used in TIMSS (and 

other large-scale assessments) as a low-cost and fast way to double-score all graphical response 

items. The method is also promising for identifying inconsistently scored responses that could be 

set aside for expert scoring from the mathematics coordinator. In sum, this validation technique 

will improve the accuracy and consistency of graphical response item scoring in future TIMSS 

cycles. 
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II. Code Optimization 

During Activity 3, the ANN modeling scripts were revised to be legible to those unfamiliar with 

the project and to run smoother. The optimization process was guided by Robert C. Martin’s 

“Clean Code: A Handbook of Agile Software Craftsmanship” (2008), with the following steps 

taken:  

● Revision of variable names to be meaningful to unfamiliar readers (e.g., changing the 

name of a data frame from “df” to reflect what is in the data frame, such as 

“accuracy_results” or “training_data_information”). 

● Add comments so that readers can follow the structure of the script and understand what 

each chunk of code is enacting.  

● Remove redundant or old functions that were no longer of use. 

● Split larger functions into smaller functions that accomplish only one or two tasks. 

Instead of one large script that covers the pre-processing, modeling, and results processes, each 

stage of modeling has a unique script:  

● The pre-processing script converts image html files to PNG files, pre-processes them (e.g., 

convert to greyscale, increase saturation, etc.), assigns the responses to training and testing 

samples, and composes the image response arrays.  

● The modeling script composes and trains ANNs based on a number of parameters provided 

by the user.  

● The modeling performance script applies the trained models to the validation samples and 

saves the results, including model accuracy, loss, and F1 scores. It also can save image 

responses where there was a disagreement between the machine score and human rater 

score for further review.  

The optimized scripts are ready to be used for TIMSS 2023 data collection and will likely require 

minimal adaptation only. 

 

III. Open Source and Public Domain Tools Used 

Multiple free R packages (R Core Team, 2022) formed the basis of the ANN modeling process 

and were integral to the success of the project. The packages contributed to multiple stages of the 

modeling process, including pre-processing, modeling, and producing performance statistics. 

 

Image Pre-Processing Packages 

 

webshot: This package was used to take screenshots of the html image response files. During the 

modeling of the Building PSI item performed prior to this grant project, html files were converted 

to PDFs manually in Adobe and then converted to PNG files. However, webshot was utilized for 

this project because it is a fast, automated way of performing batch conversions. 
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magick: This package was used for image modification. As explained in the second quarterly 

report, the images had to undergo manipulation so that their features could be better detected by 

the machine learning algorithms. The magick package has multiple functions for modification, 

including “image_crop()” and “image_chop()” to crop the image responses, “image_channel()” to 

convert the images to greyscale, “image_contrast()” to sharpen the images, “image_modulate()” 

to increase saturation of the blacks and whites, “image_convolve()” to add blurring to an image, 

and finally “image_scale()” to pixelate the image.  

EBImage: This package was used to resize image responses prior to placement in the keras arrays. The 

“as_EBImage()” function from the magick package was used to convert magick objects to EBImage objects, 

then the “resize()” function was used to shrink the images to a given pixel height and width (typically 64x64 

or 75x75 pixels).  

ggplot2: This package was used to plot image responses from keras arrays to visualize approximately how 

they would appear to the CNN models during training. 

 

ANN Modeling Packages 

 
tensorflow: This package was used as the basis for all ANN modeling. It is an open-source package for 

machine learning, in particular deep learning.  

keras: This package is the user interface to tensorflow (it operates on top of tensorflow), which provides 

all of the functions for composing and training the ANN models. The “array_reshape()” function reshapes 

a list of EBImage objects into an array that can be used for training or validating ANN models. The 

“keras_model_seqential()” function was used to build the CNN models, while the “fit()” function was 

used to train the models. The “evaluate()” function was used to produce model loss and accuracy on 

validation data.  

 

ANN Performance Packages 
 

openxlsx: This package was used to create excel workbooks with multiple tabs using the 

“createWorkbook(),” “addWorksheet()”, “writeData(),” and “saveWorkbook()” functions.  

yardstick: This package was used to compute F1 scores to evaluate model performance, using the 

“recall_vec()” function and the “precision_vec()” function to produce recall and precision estimates.  

caret: This package was used to compute kappa and IOCC (improvement over chance criterion) statistics 

to evaluate model performance, using the “confusionMatrix()” function.  
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IV. List of TIMSS 2023 Items for ANN Modeling 

Graphing Tool Items 

In TIMSS 2023, items that use the “graphing tool” will be machine scored using rule-based scoring 

in python with response coordinate strings that are saved in the raw student data. These items 

include all of the secured trend items in this grant project, which were required to be human scored 

in TIMSS 2019 because the response coordinates were not saved for machine scoring. These items 

are eligible to be validated by ANNs using screenshots of student responses to both refine the 

python scripts and rescore any “borderline” responses that may appear. “Borderline” responses are 

those where students have the correct answer present, but additional lines (e.g., stray marks, 

guiding lines, etc.) make the students’ understanding of the item unclear. We have found that the 

ANNs tend to give “borderline” responses credit while the rule-based machine scoring does not. 

Thus, there will be disagreements in classifications between the two methods, bringing these 

“borderline” responses to our teams’ attention. We will then be able to manually reclassify them 

with input from the mathematics coordinator for especially tough cases. This approach aids in 

maintaining the trend scoring for the items by using the ANNs as an emulator of human scoring 

while being faster, cheaper, less labor-intensive and potentially more accurate.  

The 10 “graphing tool” items, scored using python code and validated with ANNs, will be:  

Grade 4  

● ME61081A: Trend math item in the Geometry content area worth one point 

● ME61081B: Trend math item in the Geometry content area worth one point 

● ME61224: Trend math item in the Geometry content area worth one point 

● ME71177: Trend math item in the Geometry content area worth one point 

● ME71181: Trend math item in the Measurement content area worth one point 

● ME71211: Trend math item in the Geometry content area worth one point 

● ME81032: New math item in the Geometry content area worth one point 

● ME81902: New math item in the Measurement content area worth one point 

 

Grade 8  

● ME72119: Trend math item in the Geometry and Measurement content area worth one point 

● ME72181: Trend math item in the Geometry and Measurement content area worth one point 

 

Drawing Tool Items 

In TIMSS 2023, items that utilize the drawing tool are also eligible to be scored by the ANNs. 

Three new science items use the drawing tool function and can only be scored based upon image 

responses. The primary scoring method for these items will be human scoring, with the ANN 

approach used for validation. One item will have neural networks trained on all available image 

responses from the TIMSS 2023 field test. The two remaining items have been changed since the 

field test, and thus the field test responses would not be useful for training. A subset of responses 

from the data collection sample will be used for training instead. In total, one item is available at 

Grade 4 and two are available at Grade 8: 
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Grade 4  

● SQ81R03: New science item in the Earth in the Solar System content area worth one point 

with 10,450 image responses available for training.  

Grade 8  

● SQ82T02B: New science item in the Earth in the Solar System and Universe content area 

worth one point. 

● SQ82T04A: New science item in the Earth in the Solar System and Universe content area 

worth one point. 

It should be noted that these two of these items were modeled using convolutional neural networks 

in the TIMSS 2023 field test. More information is provided in the following section.  

 

V. CNN Modeling in the TIMSS 2023 Field Test 

All drawing tool items were unable to be scored by human raters for the TIMSS 2023 field test 

due to technical difficulties involving the bulk export of image responses on the online player 

system platform. To produce some estimate of difficulty for the “Earth’s Motions” PSI task at each 

grade, convolutional neural networks (CNNs) were used to score a random sample of 1,000 

responses for four drawing tool items. The scoring procedure followed the same general steps that 

were used to model the TIMSS 2019 items: the images underwent some pre-processing to make 

their features more detectable to the neural networks, the models were trained on a subset of 

responses and applied to remaining responses, and a subset of response classifications were 

manually reviewed.  

Because these items could not be scored by human raters hired by the countries, a random sample 

of 200 to 250 responses were human scored by a member of the research team at the TIMSS and 

PIRLS International study Center for the CNN training sample. Prior to placement in the training 

arrays, the responses were augmented to artificially increase the training sample size. 

Augmentation included copying, mirroring, and/or rotating the image responses 180 degrees. This 

process succeeded in doubling or even tripling the training sample size. Following augmentation, 

CNNs with two convolutional layers were constructed and underwent 100 epochs of training. 

Afterwards, the trained CNNs were applied to the remaining image responses and their scored 

classifications were saved.  

For verification, some responses had to be reviewed by a human rater (again, a member of the 

research team at the TIMSS and PIRLS International Study Center). Any responses scored as 

incorrect by the CNN were reviewed if the probability of the item being incorrect was less than 

90% for SQ82T05 and less than 100% for SQ81R03, SQ81R04B, and SQ81T02B.  

The following table displays the percent correct and percent code 7 statistics (where applicable). 

Additionally, the table includes the model accuracy, which is estimated from the percent of 

responses in the validation sample where the CNN score did not have to be changed after the 
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manual review (in other words, the percent of responses where the CNN score matched the human 

rater score for the subset of reviewed responses). 

 

Table 1. Item Review Statistics and Model Accuracy for Select T23 FT Earth’s Motions Items 

Item Percentage 

Correct 

Percentage 

Code 7 

CNN Model 

Accuracy 

SQ81R03 16.40%       95.25% 

SQ81R04B* 5.30% 9.40% 90.13% 

SQ82T02B 13.21% 15.62% 83.98% 

SQ82T05* 9.82%  96.62% 
*Note: Indicates item removed from the PSI task after item review 

 

VI. Journal Article 

One journal article will be written related to the work completed during this research grant project:  

Using Convolutional Neural Networks to Automatically Score Eight TIMSS 2019 Graphical 

Response Items 

 

Abstract:  

Large-scale assessments have used graphical response-based items to measure student ability for 

decades, but they have yet to implement automated scoring of these responses and instead rely on 

human scoring alone. To investigate how scores provided by machine learning algorithms compare 

to those provided by human raters, we applied convolutional neural networks (CNNs) to classify 

image-based responses from eight TIMSS 2019 items. Our results show that the most accurate 

CNN models classified over 99% of the image responses into the appropriate scoring category for 

dichotomous items, and almost 98% for one trichotomous item. Additionally, during the modeling 

process the CNNs correctly classified a number of image responses that had been incorrectly 

scored by human raters. For most items, the number of incorrectly human-scored responses was 

higher than the average number of responses misclassified by the most accurate models. These 

results suggest that automated scoring using CNNs is comparable to, and in many cases more 

accurate, than human raters. This paper argues that the machine learning procedure explored could 

be implemented in international large-scale assessments (ILSAs) as a verification method to 

improve the accuracy and consistency of graphical response item scores. In lieu of additional 

human raters, ILSAs could implement CNN-based automated scoring to provide a second set of 

scores, thus reducing the workload and costs associated with human scoring.  
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VII. Conference Proposals 

Two conference proposals have been submitted related to the work conducted prior to this grant 

concerning the “Building” PSI item, as well as modeling on select TIMSS 2019 items conducted 

under this grant:  

 

Conference submission 2: NCME 2023 

Automated Scoring of TIMSS 2019 Graphical Responses using Convolutional Neural Networks 

Abstract:  

The transition of TIMSS to a digital format in 2019 allowed for the inclusion of more innovative 

item types, including items that ask students to respond using free drawings or graphing tools. Due 

to the complexity of student responses, these items require human scoring. While human scorers 

have been the standard for scoring constructed response items in international large-scale 

assessments (ILSAs), rater effects such as fatigue and leniency can lead to inconsistencies and 

errors in their scoring. This study measured the potential for machine scoring of graphical response 

items as a validation method using convolutional neural networks (CNNs) applied to eight TIMSS 

2019 items. After image manipulation (e.g., increased contrast, cropping, etc.), CNNs were trained 

on a subset (20-30%) of student image responses using scores from the human raters, then applied 

to the remaining image responses unseen by the models. Their classifications were compared to 

the human ratings, and discrepancies in scores were assessed by an independent human rater. The 

models were extremely accurate, reaching over 99% accuracy for dichotomous items and 97% 

accuracy for one trichotomous item across five cross-validation samples. These results indicate 

that neural networks can be used to validate human scores in ILSAs for image-based responses. 

Additionally, during the process some responses were identified as being incorrectly scored by the 

human rater, further evidencing the benefit of using machine learning to improve measurement 

accuracy. 

 

Conference submission 3: IEA International Research Conference 2023  

Using Convolutional Neural Networks to Automatically Score TIMSS 2019 Graphical Response 

Items 

Abstract:  

TIMSS 2019 took advantage of its new digital format to include more interactive item types, 

including items that ask students to respond using graphing tools to produce image responses to 

assess skills in the Geometry content domain. While traditionally, these items have required human 

scoring in international large-scale assessments (ILSAs) due to the complex nature of student 

responses, scores can be influenced by rater effects like fatigue and leniency. Two consequences 

of rater effects are incorrect scoring and inconsistent scoring, which can impact the validity and 

reliability of the items. Supported by the IEA Research and Development fund, this study 

examined the possibility of scoring graphical response items using convolutional neural networks 
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(CNNs) as a validation method. To evaluate the efficacy of CNNs, eight TIMSS 2019 items were 

modeled and a second set of machine scores was produced for comparison against human scores. 

Prior to modeling, image responses were manipulated (increased contrast, conversion to greyscale, 

and pixelated), to improve feature detection by the neural networks. The CNNs were then trained 

on a subset (20-30%) of student image responses using scores from the human raters and applied 

to the remaining image responses unseen by the models.  

The models produced were extremely accurate, reaching over 99% accuracy for dichotomous 

items and nearly 98% accuracy for one trichotomous item (having an additional score category of 

partial credit) across five cross-validation samples. Discrepancies between CNN classifications 

and human ratings were assessed by an independent human rater. It was found that several 

responses were incorrectly scored by the human raters, with more image responses incorrectly 

scored for the trichotomous item and items with more possible correct response options. After an 

independent rater review, the average number of misclassified responses for the final models 

ranged from 11 to 99 for the dichotomous items and 233 for the trichotomous item. By comparison, 

the average number of incorrectly human-scored responses that were identified ranged from 23 to 

601 for the dichotomous items and 227 for the trichotomous item. These results demonstrate that 

CNNs can perform as well as, and sometimes even better than, human raters because most items 

had more incorrectly human-scored responses than incorrectly machine-scored responses. The 

method is cost-effective and time-efficient, requiring only a single independent rater to review a 

fraction of the image responses to produce a second set of scores. In sum, machine learning with 

convolutional neural networks is highly accurate. It can be used to validate human scores in ILSAs 

for image-based responses, thus improving measurement accuracy and reliability. 
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Introduction and Example Item Information 

 

The following document describes the general workflow for modeling with a TIMSS 2019 image 

response-based item. The example item included is ME52048 which is a dichotomous released 

item that measures Geometry knowledge at Grade 8. This item asks students to draw four lines 

of symmetry on a given figure. Students receive credit if they draw four lines of symmetry on the 

diagram with no other lines drawn. Below is the storyboard of the item:  

 

Note: To access, reuse, reproduce, or translate IEA materials you will need to complete a 

Permission Request Form. Please reach out to permission.requests@iea.nl for more information. 

mailto:permission.requests@iea.nl
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Below is an example of a correct response:  

 

 

Stage 1: Pre-Processing 

 

The following are the steps taken during the pre-processing stage:  

1. Assign responses to training and validation samples based upon a set sample split. For 

example, we may select 30% of responses to be in the training sample and the remaining 

70% of responses to be in the validation sample.  

a. An example function could be: make_assignment_file(), which would do the 

following:  

i. Read in data that have student IDs, the name of the images that correspond to 

their responses, and their human scores 

ii. Loop through each country, within each country and score category assign 

30% of responses to the training sample (we call “train” in our code) and 70% 

to the validation sample (we call “test” in our code) 

iii. Save CSV files of the country assignments (if desired) 

iv. Save RDS file for all of the country data together  

Script note: In our modeling script, we also have a function for creating additional sample 

assignments for cross-validation samples. Our function makes the process run faster, but any 

user can just repeat this example function additional times with separate modeling folders.   

sample_split<-0.3 #Proportion of responses to be assigned to training sample 
data<-read.xlsx(paste0(data_dir, "ME52048 example score file.xlsx")) 
country_list<-unique(data$CNTRYCODE) 
make_assignment_file<-function(){ 
  data$sample_assignment<-NA 
   
  set.seed(1234) 
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  for (country in country_list){ 
    country_data<-data %>% filter (CNTRYCODE==country) 
    for(score in c(0,1)){ 
        num_score<-length(country_data$score[country_data$score==score]) 
        assignment<-sample(c("train", "test"),  
                           size = num_score,  
                           replace = TRUE,  
                           prob = c(sample_split, 1-sample_split)) 
        country_data$sample_assignment[country_data$score==score]<-assignment 
    } 
    file_name<-paste0(save_dir, "CSVs/", country, " sample assignment.csv") 
    write.csv(country_data, file=file_name, row.names=F) 
     
    data$sample_assignment[data$CNTRYCODE==country]<-
country_data$sample_assignment 
  } 
  saveRDS(data, paste0(save_dir, "List of image responses with 
assignment.rds")) 
} 
make_assignment_file() 

 

2. Next, we make the data arrays for modeling, which involves reading in the image responses, 

modifying them to enhance feature detection, and placing them in a keras array. We have 

found that it saves time to create one array that includes all data, and then reshape that array 

into separate training and validation arrays. This is especially useful when testing different 

training sample sizes and going through multiple iterations of modeling. Three example 

functions could be used:  

a. The modify_image_responses() function, which would do the following:  

i. Crop the image responses 

ii. Convert image responses to greyscale 

iii. Increase saturation and contrast of images 

iv. Pixelate the images 

Script note: In our modeling script, we have to move the image responses from one location one 

the server to another location, so in the process we apply all modifications except for pixelation. 

Thus, images receive pixelation only when they are placed in the array.  

chop_dims<-"11x47" 
crop_dims<-"383x383" 
pixel_width = 75 
pixel_height = pixel_width 

modify_image_responses<-function(image_list){ 
  #Crop images 
  image_list<-lapply(image_list, image_chop, chop_dims)   
  image_list<-lapply(image_list, image_crop, crop_dims) 
   
  #Convert to greyscale 
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  image_list<-lapply(image_list, image_channel, channel = "C") 
   
  #Increase contrast 
  image_list<-lapply(image_list, image_modulate, saturation=200) 
  image_list<-lapply(image_list, image_contrast, sharpen=1) 
   
  #Add pixelation 
  image_list<-lapply(image_list, image_scale, paste0("x", pixel_height)) 
  image_list<-lapply(image_list, image_scale, "x500") 
   
  return(image_list) 
} 

b. The create_all_data_array(), which would do the following:  

i. Read in the data assignment file 

ii. Read in the image responses  

iii. Call the modify_image_responses() function to manipulate responses 

iv. Resize the image responses and arrange into an array 

v. Return the array of images and their corresponding labels (human rater scores) 

Script note: In our modeling script, we actually loop the formation of the arrays. We’ve found 

that when dealing with thousands of image responses, it is faster to read in 500 to 1,000 at a time, 

reshape them and place them in small arrays. Once the small arrays are created they are then 

bound together into one larger array.  

create_all_data_array<-function(){ 
  data<-readRDS(paste0(save_dir, "List of image responses with 
assignment.rds")) 
  pics<-list() 
  image_files<-paste0(image_dir, data$CNTRYCODE, "/", data$image_name, 
".png") 
  #image_files<-image_files[1:25] 
  for (i in 1:length(image_files)){ 
    pics[[i]]<-image_read(image_files[i]) 
  } 
 
  pics<-modify_image_responses(pics) 
   
  #Convert to EBImage object, resize, and convert to keras array 
  pics<-lapply(pics, as_EBImage) 
  pics<-lapply(pics, resize, w=pixel_width, h=pixel_height) 
  pics<-lapply(pics, array_reshape, c(pixel_width, pixel_height, 1)) 
  images<-rlist::list.rbind(pics) 
  images<-array_reshape(images, c(nrow(images), pixel_width, pixel_height, 
1)) 
  return(list(images=images, labels=data$score)) 
} 
arrays<-create_all_data_array() 
images=arrays$images 
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labels=arrays$labels 
save(images, labels, file=paste0(save_dir, "all data arrays.RData")) 

c. The create_sample_array() function, which could take the argument “sample_type”, 

which would indicate which sample array would be created, either the training or the 

validation sample. This function would do the following:  

i. Load the arrays for all of the data 

ii. Randomize the data and reduce it to just the sample type  

iii. Go through each response in the data, taking the image response object from 

the full data array and placing it into a new sample array  

Script note: In our modeling script, we again create smaller arrays to merge into a larger array to 

quicken the process. Additionally, there is an option to create the cross-validation sample arrays 

automatically, but a user could just run this example function multiple times instead.  

data<-readRDS(paste0(save_dir, "List of image responses with 
assignment.rds")) 
data$id_num<-row.names(data) 
 
make_sample_arrays<-function(sample_type){ 
  sample_data<-data%>%filter(data$sample_assignment==sample_type) 
  set.seed(1234) 
  sample_data<-sample_data[sample(nrow(sample_data), nrow(sample_data)),] 
  all_data_array_nums<-sample_data$id_num 
  all_data_array_nums<-as.numeric(all_data_array_nums) 
   
  for (i in 1:length(all_data_array_nums)){ 
      if (i==1){ 
        ims<-images[all_data_array_nums[i], 1:pixel_height, 1:pixel_width, 1] 
      } else if (i==2) { 
        ims<-abind::abind(ims, images[all_data_array_nums[i], 1:pixel_height, 
1:pixel_width, 1], along=0) 
      } else { 
        ims<-abind::abind(ims, images[all_data_array_nums[i], 1:pixel_height, 
1:pixel_width, 1], along=1) 
      } 
  } 
  sample_images<-array_reshape(ims, c(nrow(ims), pixel_width, pixel_height, 
1)) 
  return(list(images=sample_images, labels=sample_data$score)) 
} 
 
#Create training sample arrays 
arrays<-make_sample_arrays(sample_type="train") 
train_images<-arrays$images 
trainLabels<-arrays$labels 
save(train_images, trainLabels,  
     file=paste0(save_dir, "train data arrays.RData")) 
 
#Create validation sample arrays 
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arrays<-make_sample_arrays(sample_type="test") 
test_images<-arrays$images 
testLabels<-arrays$labels 
save(test_images, testLabels,  
     file=paste0(save_dir, "test data arrays.RData")) 

 

3. Finally, we can plot the image responses in the arrays to get a rough estimate of how the 

neural networks will “view” them: 

a. We can plot just one image 

image <- as.data.frame(images[1, , , ]) 
colnames(image) <- seq_len(ncol(image)) 
image$y <- seq_len(nrow(image)) 
image <- gather(image, "x", "value", -y) 
image$x <- as.integer(image$x) 
   
ggplot(image, aes(x = x, y = y, fill = value)) + 
    geom_tile() + 
    scale_fill_gradient(high = "white", low = "black", na.value = NA) + 
    scale_y_reverse() + 
    theme_minimal() + 
    theme(panel.grid = element_blank())   + 
    theme(aspect.ratio = 1) + 
    xlab("") + 
    ylab("") 
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b. Or we can plot multiple images at a time 

par(mfcol=c(3,3)) 
par(mar=c(0, 0, 1.5, 0), xaxs='i', yaxs='i') 
for (i in 1:9) {  
    img <- images[i, , , ] 
    img <- t(apply(img, 2, rev))  
    image(1:pixel_width, 1:pixel_height, img, col = gray((0:255)/255), xaxt = 
'n', yaxt = 'n', 
          main = paste(class_names[grepl(labels[i], class_names)])) 
} 
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Stage 2: Modeling 

 

During the modeling process, the training samples are loaded and models are constructed and 

trained on the training sample array. Any user can create a model, with the most basic 

convolutional neural network having one convolutional layer and two dense layers. A basic 

model, for example, would be the following:  

model<-keras_model_sequential() 

model %>% 
  layer_conv_2d(filters=32, kernel_size=c(3,3), activation='relu', 
input_shape= 
                  c(pixel_width, pixel_height,1)) %>% 
  layer_max_pooling_2d(pool_size=c(2,2)) %>% 
  layer_flatten()%>% 
  layer_dense(units = 128, activation = 'relu') %>% 
  layer_dense(units=3, activation='softmax') 
 
 
model %>% compile( 
  optimizer = 'nadam',  
  loss = 'sparse_categorical_crossentropy', 
  metrics = c('accuracy') 
) 
model %>% fit (train_images, trainLabels, epochs=25, verbose=FALSE, 
view_metrics=TRUE) 

 

To enable us to run multiple models quickly, we wrote a function named run_CNN_models(), 

which constructs and trains one or more CNN models according to user specifications, including:  

● The number of dense (fully-connected) layers desired, can either be a number (e.g., “2”) 

or a vector (e.g., “c(2, 3)”), which would run multiple models, (one with two dense 

layers, and one with three dense layers). The default is 2.  

● The unit of the first dense layer, default is 128.  

● The number of units by which subsequent dense layers should increase, default is 64. 

● The number of convolutional layers desired. Like with the argument for the dense layers, 

the user can specify either a single number or a vector.  

● The number of filters of the first convolutional layer, the default is 32.  

● The number of filters by which subsequent convolutional layers should increase, default 

is 32. 

● Max pooling size, default is 2x2 

● Padding used, can be either “zero”, “no”, or “both,” which produces models with zero 

padding and no padding, default is “both”.  

● Whether dropout layers should be included, default is FALSE. 

● The dropout rate of the dropout layers, default is 0.25.  
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● Whether the training plot should be shown, the default is FALSE. 

Say we want to run four convolutional models total, two with one convolutional layer and two 

with two convolutional layers, both testing zero and no padding. We would set up the function as 

follows:  

source(paste0(root_dir, "CNN Modeling Example_Modeling Functions.R")) 
opt<-"nadam" 
epochs<-25 
CNNs<-run_CNN_models(dense_layers=2, 
                       dense_base_unit=128, 
                       dense_unit_increase=64, 
                       convolutional_layers=c(1,2), 
                       c_filters=32, 
                       c_filters_increase=32, 
                       pool_size=c(2,2), 
                       padding="both", 
                       with_dropout=FALSE, 
                       dropout_rate=0.25,  
                       view_plot=FALSE) 

When the function is run, the models are returned as a list (along with names to save the models 

under and the time it took to run the models). The models can then be saved to a folder so they 

can be used again in the future:  

models<-CNNs$models 
model_names<-CNNs$model_names 
 
for (i in 1:length(models)){ 
  filename<- paste0(save_dir, opt," ", model_names[i]," (", epochs, " 
epochs)", ".hdf5") 
  save_model_hdf5(models[[i]], filename, overwrite = TRUE, include_optimizer 
= T) 
} 

 

 

Stage 3: Evaluating Model Performance 

 

Modeling performance can be evaluated in a number of ways: overall accuracy, model loss (how 

well the model fits the data), precision, recall, F1-scores, improvement over chance criterion, etc. 

In our modeling scripts, we produce all of these statistics in addition to classification accuracy by 

country and classification accuracy for incorrectly human-scored responses. For simplicity, our 

example will just cover the basic model performance statistics.  

 

1. First, we can produce the basic model performance metrics:  
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a. Begin with accuracy and loss using the keras evaluate() function:  

model<-models[[1]] 
classify_test_samp<-model %>% evaluate(test_images, testLabels) 
loss<-classify_test_samp[1] 
accuracy<-classify_test_samp[2] 

b. Next, compute the precision, recall, and F1-Scores using the yardstick package:  

compute_precision_recall_f1<-function(model){ 
  predicted_probs <- model %>% predict(test_images, verbose=0) 
  class_pred <- as.array(k_argmax(predicted_probs, axis=-1)) 
  rater_scores<-as.factor(testLabels) 
  classifications<-as.factor(class_pred) 
  levels(classifications)<-c("0", "1") 
 
  recall<-yardstick::recall_vec(truth=rater_scores, 
estimate=classifications) 
  precision<-yardstick::precision_vec(truth=rater_scores, 
estimate=classifications) 
  f1_score<-(2*precision*recall)/(precision+recall) 
   
  return(list(recall=recall, precision=precision, f1=f1_score)) 
} 
 
prf1<-compute_precision_recall_f1(model) 
recall<-prf1$recall 
precision<-prf1$precision 
f1_score<-prf1$f1 

c. Compute the improvement over chance criterion (IOCC— how much better a model 

classified the responses in the validation sample than if the classification had been 

done by chance) using the caret package:  

compute_IOCC<-function(model){ 
  predicted_probs <- model %>% predict(test_images, verbose=0) 
  class_pred <- as.array(k_argmax(predicted_probs, axis=-1)) 
  rater_scores<-as.factor(testLabels) 
  classifications<-as.factor(class_pred) 
  levels(classifications)<-c("0", "1") 
   
  cm<-caret::confusionMatrix(data=classifications, 
reference=rater_scores) 
  Ho<-length(classifications[classifications==rater_scores]) 
  N<-length(testLabels) 
  t<-table(testLabels) 
  if (n_score_categories==3){ 
    He<-((1/3)*(t[1]))+((1/3)*(t[2]))+((1/3)*(t[3])) 
  } else { 
    He<-((1/2)*(t[1]))+((1/2)*(t[2])) 
  } 
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  IOCC=((Ho/N)-(He/N))/(1-(He/N)) 
  return(IOCC) 
} 
IOCC<-compute_IOCC(model) 

 

d. Finally, put all of the results together into a data frame: 

num_incorrect=length(testLabels[testLabels!=as.array(k_argmax(model 
%>% predict(test_images, verbose=0), axis=-1))]) 
results<-data.frame(loss, accuracy, precision, recall, f1_score, 
IOCC, num_incorrect) 
row.names(results)[1]<-"model" 
results 

##          loss    accuracy precision recall  f1_score  IOCC    
num_incorrect 
## model    0.0541  0.9857   0.9946    0.9786  0.9865    0.9713  10                  

 

e. To speed up the process, we can put these capabilities together into a function named 

model_performance_statistics(), which could take the argument “model”, which is a 

trained keras model. After creating this model, we could run it for every model 

produced and save the results in an excel file:  

model_performance_statistics<-function(model){ 
  classify_test_samp<-model %>% evaluate(test_images, testLabels, 
verbose=0) 
  loss<-classify_test_samp[1] 
  accuracy<-classify_test_samp[2] 
   
   
  prf1<-compute_precision_recall_f1(model) 
  recall<-prf1$recall 
  precision<-prf1$precision 
  f1_score<-prf1$f1 
 
  IOCC<-compute_IOCC(model) 
   
  
responses_incorrect=length(testLabels[testLabels!=as.array(k_argmax(
model %>%       predict(test_images, verbose=0), axis=-1))]) 
  results<-data.frame(loss, accuracy, precision, recall, f1_score, 
IOCC, responses_incorrect) 
  return(results) 
} 
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for (i in 1:length(models)){ 
  model_results<-model_performance_statistics(model=models[[i]]) 
  row.names(model_results)[1]<-model_names[i] 
  if (i==1){ 
    all_results<-model_results 
  } else { 
    all_results<-rbind(all_results, model_results) 
  } 
} 
write.xlsx(all_results, file=paste0(save_dir, "Model performance 
statistics.xlsx"), rowNames=T) 

 

2. Another helpful document to have may be an excel workbook with the classifications by 

score category for each model produced. To create this file, we could use a function called 

score_category_classifications(), which could take the argument “model” (a trained keras 

model). After creating this model, we could run it for every CNN produced and save the 

results in an excel workbook with a separate page for each model:  

score_category_classifications<-function(model){ 
  score_class<-data.frame(matrix(ncol=3, nrow=3)) 
  names(score_class)<-c("Correctly_classified", "Misclassified", "Total") 
  row.names(score_class)<-c("0: Incorrect", "1: Correct", "Total") 
   
  predicted_probs <- model %>% predict(test_images, verbose=0) 
  CNN_scores <- as.array(k_argmax(predicted_probs, axis=-1)) 
  rater_scores<-testLabels 
  classifications<-data.frame(rater_scores, CNN_scores) 
  classifications$match<-
classifications$rater_scores==classifications$CNN_scores 
   
  score_class$Total[1]<-
length(classifications$rater_scores[classifications$rater_scores==0]) 
  score_class$Total[2]<-
length(classifications$rater_scores[classifications$rater_scores==1]) 
  score_class$Total[3]<-length(classifications$rater_scores) 
   
  incorrect_match<-
length(classifications$rater_scores[classifications$rater_scores==0&classi
fications$match==TRUE]) 
  correct_match<-
length(classifications$rater_scores[classifications$rater_scores==1&classi
fications$match==TRUE]) 
  score_class$Correctly_classified[1]<-incorrect_match 
  score_class$Correctly_classified[2]<-correct_match 
   
  score_class$Misclassified[1]<-score_class$Total[1]-incorrect_match 
  score_class$Misclassified[2]<-score_class$Total[2]-correct_match 
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  score_class$Correctly_classified[3]<-
length(classifications$match[classifications$match==TRUE]) 
  score_class$Misclassified[3]<-
length(classifications$match[classifications$match==FALSE]) 
   
  return(score_class) 
} 

 

score_class_workbook<-createWorkbook() 
for (i in 1:length(models)){ 
  classification_results<-
score_category_classifications(model=models[[i]]) 
  addWorksheet(score_class_workbook, model_names[i]) 
  writeData(score_class_workbook, model_names[i], classification_results, 
rowNames = T) 
  setColWidths(score_class_workbook, model_names[i], cols = 
1:ncol(classification_results), widths = "auto") 
} 
saveWorkbook(score_class_workbook, file=paste0(save_dir, "Classifications 
by score category.xlsx"), overwrite=T) 

 

3. A final document that we should produce is the assignment file with the machine scores 

added. This way, we can see which specific responses have misclassifications according to a 

given model.  

#Read in the assignment file 
data<-readRDS(paste0(save_dir, "List of image responses with 
assignment.rds")) 
 
#Narrow down to just responses in validation sample 
data<-data%>%filter(sample_assignment=="test") 
 
#Reorder rows to match the order in array 
set.seed(1234) 
data<-data[sample(nrow(data), nrow(data)),] 
all.equal(data$score, testLabels) #Make sure labels and scores match 

## [1] TRUE 

 

data<-data[1:6] 
names(data)[6]<-"human_score" 
for (i in 1:length(models)){ 
  model<-models[[i]] 
  predicted_probs <- model %>% predict(test_images, verbose=0) 
  CNN_scores <- as.numeric(k_argmax(predicted_probs, axis=-1)) 
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  data[,6+i]<-CNN_scores 
  names(data)[6+i]<-paste0(model_names[i], "_score") 
} 
write.xlsx(data, file=paste0(save_dir, "Validation sample information with 
machine scores.xlsx"), overwrite=T) 

 

4. The last step would be to review any responses where there are disagreements between the 

human rater scores and the CNN scores. To review responses with mismatching scores, 

select a model that was run and compare the human scores and the machine scores by adding 

a new column, for example “match”. For any responses where “match” is false, we can copy 

the image response file from the image directory to a subdirectory in the modeling folder.  

selected_model<-models[[2]] 
selected_model_name<-model_names[2] 
 
data<-read.xlsx(paste0(save_dir, "Validation sample information with 
machine scores.xlsx")) 
data_sub<-data[1:6] 
col_name<-paste0(selected_model_name, "_score") 
col_name<-gsub(" ", ".", col_name) 
data_sub<-cbind(data_sub, data[[col_name]]) 
names(data_sub)[7]<-paste0(selected_model_name, "_score") 
data_sub$match<-data_sub[,6]==data_sub[,7] 
 
mismatching_responses<-data_sub%>%filter(match==FALSE) 
 
dir.create(paste0(save_dir, selected_model_name, " mismatching 
responses/")) 

 

for (row in 1:nrow(mismatching_responses)){ 
  file.copy(from=paste0(image_dir, mismatching_responses$CNTRYCODE[row], 
"/", mismatching_responses$image_png[row]),  
            to=paste0(save_dir, selected_model_name, " mismatching 
responses/", mismatching_responses$CNTRYCODE[row], "_", 
mismatching_responses$image_png[row])) 
} 

 

 


