

Utilization of TIMSS results in Germany

Eckhard Klieme

German Institute for International Educational Research (DIPF) Frankfurt am Main, Germany

> IEA General Assembly Phuket, Thailand, October 9, 2012

Overview

- Background: The German tradition of educational governance
- The TIMSS Shock, and it's consequences for educational policy
- Research consequences:

exploring quality in teaching and learning

- Science/Math reforms triggered by TIMSS 1995 and subsequent research
- Change in Student Achievement until 2009
- Lessons to be learned

FIMS 1964 FISS 1970

FIMS 1964 FISS 1970

Reading Ability Study IRLS 1991 (Lehmann) TIMSS 1995 (Grades 7/8, and 12) (Baumert, Lehmann, Bos, Klieme)

TIMSS 1995, Grade 8 "Shock": mediocre results

Educational Research and Educational Information

Policy reactions to the Shock DIPF

Educational Research and Educational Information

More control

•National standards established,

since 2009 used for system monitoring & school evaluation.

•School inspectorates, National indicator-based report

•Certification (Abitur) based on state-wide exit exams

•Regular participation in national and international surveys (LSA)

FIMS, FISS

Reading Ability Study IRLS 1991 TIMSS 1995 (Grades 7/8, and 12)

Civic Education Study 1999

PIRLS 2001 PIRLS 2006 TIMSS 2007 (grade 4) PIRLS & TIMSS 2011 (grade 4)

TEDS-M

FIMS, FISS

Reading Ability Study IRLS 1991 TIMSS 1995 (Grades 7/8, and 12)

Civic Education Study 1999

PIRLS 2001 PIRLS 2006 TIMSS 2007 (grade 4) PIRLS & TIMSS 2011 (grade 4)

TEDS-M

PIAAC

Reactions by Scientists

Fostering Educational Research

•Building a strong infrastructure for both fundamental and applied research (includes IEA-DPC, Hamburg)

•Enhancing the design of international Large Scale Assessments to allow for insights into the quality of teaching and learning (e.g., participation in TIMSS-Video, with longitudinal assessment design)

•Secondary analyses of international data sets using complex methods (multidimensional scaling, DIF analysis, multi-level modeling)

TIMSS 1995, Grade 8 DIPF Exploration #1: large inequity - linked to track Snd Educational Information

1 4

Relative strengths of Japanese students percent correct in Germany 34%, in Japan 85%

Q10. In the figure, the measure of $\angle AOB$ is 70°, the measure of $\angle COD$ is 60°, and the measure of $\angle AOD$ is 100°.

 $(\mathsf{DIF}\cong+2/3)$

What is the measure of $\angle COB$?

Answer:_____

Relative strengths of German students percent correct in Germany 84%, in Japan 64%

TEMPERATURES					
	6 a.m.	9 a.m.	Noon	3 p.m.	8 p.m.
Monday	15°	17°	20°	21°	19°
Tuesday	15°	15°	15°	10°	9°
Wednesday	8°	10°	14°	13°	15°
Thursday	8°	11°	14°	17°	20°

P17.	This table shows	temperatures at	various	times	during	the week.
------	------------------	-----------------	---------	-------	--------	-----------

Which thermometer shows the temperature at 8 p.m. on Monday?

 $(\mathsf{DIF}\cong-1.0)$

TIMSS 1995, Grade 8 Exploration #2: weak profile of competences DIPF (Analysis of item DIF)

Based on 153 TIMSS grade 8 math items

Cognitive demand	Explained variance (adjusted)	Direction
(1) General cognitive level	9 %	+ J
(2) Openness	2 %	+ J
(3) Application	11 %	+ G
(4) Content domain	7 %	Geometry + J Algebra + J Data analysis + G

TIMSS 1995 Video Study Exploration #4: low level of cognitive activation in classrooms

1 9

TIMSS 1995 Video/Germany:

high-inference video-ratings (Clausen, Klieme & Baumert 2002)

(national sample, 100 + 86 lessons)

Classroom Management	Supportive climate	Cognitive Activation	
Effective treatment of	Social orientation:	Teacher's ability to motivate	
interruptions	"teacher takes care of his	students:	
"teacher intervenes	students' problems''	"can present even abstract	
immediately, before	Teachers diagnostic competence	content in an interesting	
disturbance may evolve"	with regard to social behavior	manner "	
Clarity of rules	Individual reference norm in	Errors as opportunities	
Interruptions (-)	evaluation	Demanding tasks	
Waste of time (-)	Rate of interaction (-)	Practicing by repetition (-)	
Monitoring	Pressure on students (-)		
Time on task			
Teacher Unreliability (-)			
Clarity and structuredness of			
the Instruction			

rch

formation

TIMSS 1995 Video/Germany: Explaining one-year-growth in student achievement and motivation

Dimension	Criterion (mean residual, aggregated on class level)		
	Achievement gain	Gain in motivation	
Classroom management	.07	15	
Student orientation	03	.22 *	
Cognitive activation	.22 *	04	

rch formation

TIMSS 1995 Video/Germany: Classroom Management and Cognitive Activation are related to teacher beliefs

"Basic computational skills are sufficient"

Policy reactions to the Shock DIPF

Educational Research and Educational Information

More control

National standards established, since 2009 used for system monitoring & school evaluation.
School inspectorates, National indicator-based report
Certification (*Abitur*) based on state-wide exit exams
Regular participation in national and international surveys (LSA)

+ more support for schools, teachers, and students

new pedagogical initiatives
 (focus: mathematics and science - less: reading, migrant students)

•all-day schooling

teacher professionalization

- systematic development of Science and Mathematics Education
- based on expert report from the TIMSS research team (Baumert/Prenzel)
- more than 1800 schools participated in regional networks
- centralized development of training material for teachers and students + evaluation
- regional support from Mathematics and Science education experts
- + numerous other STEM-initiatives

(SINUS for primary schools, "Science in context", national center for professional development in mathematics teaching....)

and Educational Information

Ort, Datum | Name Referent | Name der Veranstaltung | Titel der PowerPoint-Präsentation

Module 1: Developing a Task Culture

Tasks play an important role in math and science lessons and should not merely be a part of the routine curriculum. It is the aim of this module *to create and apply mathematical tasks that enable students to find different ways of solving problems.*

systematically revise existing knowledge of the student and supplement it with new material. inspire the setting of new tasks.

Module 2: Scientific Working

A high potential is attributed to scientific thinking and working pattern in the classes. The following list of practical scientific aspects has proven beneficial for use in teaching even in the absence of a scientific method (Duit and others 2004):

Observation and measurement Comparison and classification Investigation and experimentation Estimation and verification Discussion and interpretation Modelling and computation Research and communication

Module 3: Learning from Mistakes

Separation of learning and performance situations

Focus of this module is on reviewing errors as a learning opportunity. This at first results in the prerequisite that *making mistakes is permitted in the class without assessment and humiliation*. It is not the punishment of mistakes with bad grades, but appreciation of the success of the learning process that should be in the foreground.

Mistake as a learning opportunity is a chance for both teachers and pupils

Module 4: Gaining basic Knowledge Module 5: Cumulative Learning Module 6: Interdisciplinary working Module 7: Motivating girls and boys Module 8: Cooperative leraning Module 9: Autonomous Learning Module 10: Progress of Competences Module 11: Quality assurance

Result (?): Student achievement 2000-2006 (PIRLS + PISA)

Educational Research and Educational Information

3 0

Result (?): Student achievement 2006-2009 (PISA)

Educational Research and Educational Information

Lessons to be learned

- Policy makers, politicians, and the public are activated through "shocking" findings.
- OECD/ PISA may be better than IEA in "shocking" politics, because it is associated with economic strength, competition, and power.
- Change does not come from "shock" rather, it must be based on an understanding of quality aspects in teaching and learning.
- IEA should focus on strength in research, addressing quality issues in teaching and learning, and providing explanatory models.
- Advanced research needs sophisticated designs and methods, e.g.
 - sophisticated scaling, analysis of demand factors, DIF analysis
 - theory-based assessment of teaching quality (Video ??)
 - longitudinal designs (enhancements).