IEA Specific Approach to the Assessment of Educational Achievement:

The TEDS-M experience

Sigrid Blömeke

Centre for Educational Measurement at the University of Oslo (CEMO), Norway
Leibniz-Humboldt Professor of Instructional Research, Kiel and Berlin, Germany
A reminder: What was TEDS-M?

Primary & lower secondary math teachers in their final year of teacher ed.

23.000 future teachers from 800 institutions in 17 countries

2007/08 Data collection

Results released 2010
Table of Content

1) Challenges of the first study in higher education

2) Results: Framing of teacher competence in TEDS-M and effects of teacher education on teacher competence

3) Follow-up studies triggered by TEDS-M
Challenges of the first study in HE

Gap between research groups: experts on student achievement not familiar with higher education, higher education experts not familiar with assessments – TEDS-M built up new communities

Theory gaps: assessing teacher competencies as predictors of student achievement requires a model of teacher education effectiveness and a model of teacher effectiveness – finally done
Challenges of the first study in HE

Gap between research groups: experts on student achievement not familiar with higher education, higher education experts not familiar with assessments – TEDS-M built up a new community

Theory gaps: assessing teacher competencies as predictors of student achievement requires a model of teacher education effectiveness and a model of teacher effectiveness – finally done

Objections: first cross-country study of higher-education outcomes with a standardized approach (see PISA criticism) – resolved

Hesitations: TEDS-M is about „us“ – resolved (can be regarded as an indicator of content validity)
Challenges of the first study in HE

Concerns about the common IEA quality criteria: sampling, response rates – **difficult but at least partly resolved**

11 (primary) or 9 (lower-secondary) countries CPR > 75%, 4 or 6 countries > 60% and reported with annotations (but Norway with a different sample definition and the U.S. with >20% missings on crucial variables), Canada had to be excluded.
Challenges of the first study in HE

Concerns about the common IEA quality criteria: sampling, response rates – difficult but at least partly resolved

11 (primary) or 9 (lower-secondary) countries CPR > 75%, 4 or 6 countries > 60% and reported with annotations (but Norway with a different sample definition and the U.S. with >20% missings on crucial variables), Canada had to be excluded

Discussions about the unit of analysis (country vs. program type): controversy about comparability only partly resolved – several countries used both, ISC used program type level
Challenges of the first study in HE

Discussions about the *nature* of mathematics pedagogical content knowledge and what to assess: partly resolved – *countries agreed on focus on student errors*, PCK more strongly related to $C$ than to $P$ (lack about consensus and items)
Challenges of the first study in HE

Discussions about the nature of mathematics pedagogical content knowledge and what to assess: partly resolved – countries agreed on focus on student errors, PCK more strongly related to C than to P (lack about consensus and items)

Discussions about the nature of general pedagogical knowledge and what to assess: not resolved (again lack of consensus and items) – two versions applied as national options
Summary #1: Discussions have considerably moved forward higher education research
- conceptually (frameworks, constructs)
- methodologically (new instruments)
- operationally (reduced reluctance, proved that it can be done)
Social, schooling and policy context

Characteristics of teacher education
Program policy, OTL, connection of theory and practice

Characteristics of teacher educators
Demographic and professional background, beliefs

Characteristics of Future Teachers
Demographic and school background, prior competencies

Teacher competence at the end of teacher education
MCK, MPCK, GPK, Attitudes/Beliefs, Motivation, Personality

(Tatto et al., 2008)
Social, schooling and policy context

Characteristics of teacher education
Program policy, OTL, connection of theory and practice

Characteristics of teacher educators
Demographic and professional background, beliefs

Characteristics of Future Teachers
Demographic and school background, prior competencies

Teacher competence at the end of teacher education
MCK, MPCK, GPK, Attitudes/Beliefs, Motivation, Personality

TEDS-M Conceptual framework

Institutional Survey
(Tatto et al., 2008)

Future Teacher Survey

Teacher Educator Survey

MCK, MPCK & (GPK) Knowledge Tests
Assessment of teacher competence

MCK and MPCK tests
- about 100 items in each study (primary/ lower secondary)
- 70 MCK and 30 MPCK items, 5 or 3 booklets, BIB design
- number, algebra, geometry (about equal weight) and data
- recalling, applying and reasoning (similar to TIMSS)
- mostly MC or complex MC, few constructed-response items
- separate 1-par Rasch models for MCK and MPCK
Assessment of teacher competence

MCK and MPCK tests
- about 100 items in each study (primary/ lower secondary)
- 70 MCK and **30 MPCK** items, 5 or 3 booklets, BIB design
- number, algebra, geometry (about equal weight) and data
- recalling, applying and reasoning (similar to TIMSS)
- mostly MC/ complex MC, **few constructed-response items**
- separate 1-par Rasch models for MCK and MPCK
Three students have drawn the following Venn diagrams showing the relationships between four quadrilaterals: Rectangles (RE), Parallelograms (PA), Rhombuses (RH), and Squares (SQ).

Check one box.

A. [Tian]  
B. [Rini]  
C. [Mia]  

$\text{Check one box.}$

$0_1$  
$0_2$  
$0_3$
When teaching children about length measurement for the first time, Mrs. [Ho] prefers to begin by having the children measure the width of their book using paper clips, then again using pencils. Give **TWO** reasons she could have for preferring to do this rather than simply teaching the children how to use a ruler?

**Significant and acceptable reasons:**

- Understanding of what *measurement* is (any object/unit can be used)
- Need for standard units (by creating uncertainty about length)
- Choosing most appropriate unit (using objects of different lengths helps)
### Assessment of teacher competence

<table>
<thead>
<tr>
<th>TEDS-M GPK test</th>
<th>Cognitive processes involved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recalling</td>
</tr>
<tr>
<td><strong>GPK dimensions</strong></td>
<td>structuring</td>
</tr>
<tr>
<td>motivation/management</td>
<td></td>
</tr>
<tr>
<td>adaptivity</td>
<td></td>
</tr>
<tr>
<td>diagnosing</td>
<td></td>
</tr>
</tbody>
</table>

About 80 MC, CR and OR items assessing GPK

=> Validity confirmed in Germany, Taiwan, U.S.
Imagine you are helping a future teacher to evaluate her lesson because she has never done this before. To help her adequately analyze her lesson, what question would you ask? Formulate ten essential questions and write them down.

1) *Do your students have prior knowledge about the subject?*

2) *What are your objectives?*

3) *Are the students working individually or in groups?*

...  

10) *Have your students gained the knowledge from the lesson?*

*(genuine response from the U.S. TEDS-M study of middle school teachers)*

Three-level model of future primary teachers’ MCK regressed on teacher education (Blömeke et al., 2011)
(Level 1: Future teachers, level 2: Institutions/programs, level 3: countries (fixed effects))

<table>
<thead>
<tr>
<th><strong>M0</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Individual</strong></td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Parent ed.</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>School GPA</td>
</tr>
<tr>
<td>School math</td>
</tr>
<tr>
<td>Ped. Motive</td>
</tr>
<tr>
<td>Subj. Motive</td>
</tr>
<tr>
<td>Extr. Motive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Institution</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>OTL math</td>
</tr>
<tr>
<td>OTL math ped.</td>
</tr>
<tr>
<td>Teach method</td>
</tr>
<tr>
<td>Selectivity</td>
</tr>
</tbody>
</table>

| **R^2** | 24.6% |
Three-level model of future primary teachers’ MCK regressed on teacher education (Blömeke et al., 2011)
(Level 1: Future teachers, level 2: Institutions/programs, level 3: countries (fixed effects))

<table>
<thead>
<tr>
<th></th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>25.5***</td>
<td>25.0***</td>
<td>25.4***</td>
<td>25.4***</td>
<td>25.0***</td>
<td>25.1***</td>
<td>24.7***</td>
</tr>
<tr>
<td>Parent ed.</td>
<td>2.2*</td>
<td>2.3*</td>
<td>2.2*</td>
<td>2.2*</td>
<td>2.3*</td>
<td>2.2*</td>
<td>2.2*</td>
</tr>
<tr>
<td>Language</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>School GPA</td>
<td>10.3***</td>
<td>10.3***</td>
<td>10.2***</td>
<td>10.3***</td>
<td>10.3***</td>
<td>9.7***</td>
<td>9.8***</td>
</tr>
<tr>
<td>School math</td>
<td>9.8***</td>
<td>9.7***</td>
<td>9.8***</td>
<td>9.8***</td>
<td>9.7***</td>
<td>9.7***</td>
<td>9.6***</td>
</tr>
<tr>
<td>Ped. Motive</td>
<td>-4.7***</td>
<td>-4.4***</td>
<td>-4.8***</td>
<td>-4.8***</td>
<td>-4.4***</td>
<td>-4.7***</td>
<td>-4.4***</td>
</tr>
<tr>
<td>Subj. Motive</td>
<td>14.4***</td>
<td>13.6***</td>
<td>14.3***</td>
<td>14.3***</td>
<td>13.6***</td>
<td>14.1***</td>
<td>13.5***</td>
</tr>
<tr>
<td>Extr. Motive</td>
<td>-7.5***</td>
<td>-7.4***</td>
<td>-7.5***</td>
<td>-7.5***</td>
<td>-7.4***</td>
<td>-7.2***</td>
<td>-7.2***</td>
</tr>
<tr>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTL math</td>
<td>34.1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTL math ped.</td>
<td></td>
<td>23.7*</td>
<td></td>
<td></td>
<td>13.7†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teach method</td>
<td></td>
<td>ns</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Selectivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.7**</td>
<td>31.9***</td>
</tr>
<tr>
<td>( R^2 )</td>
<td>24.6%</td>
<td>38.1%</td>
<td>29.5%</td>
<td>27.5%</td>
<td>40.7%</td>
<td>37.8%</td>
<td>46.3%</td>
</tr>
</tbody>
</table>
Three-level model of future primary teachers’ MCK regressed on teacher education (Blömeke et al., 2011)
(Level 1: Future teachers, level 2: Institutions/programs, level 3: countries (fixed effects))

<table>
<thead>
<tr>
<th></th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Individual</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>25.5***</td>
<td>25.0***</td>
<td>25.4***</td>
<td>25.4***</td>
<td>25.0***</td>
<td>25.1***</td>
<td>24.7***</td>
</tr>
<tr>
<td>Parent ed.</td>
<td>2.2*</td>
<td>2.3*</td>
<td>2.2*</td>
<td>2.2*</td>
<td>2.3*</td>
<td>2.2*</td>
<td>2.2*</td>
</tr>
<tr>
<td>Language</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>School GPA</td>
<td>10.3***</td>
<td>10.3***</td>
<td>10.2***</td>
<td>10.3***</td>
<td>10.3***</td>
<td>9.7***</td>
<td>9.8***</td>
</tr>
<tr>
<td>School math</td>
<td>9.8***</td>
<td>9.7***</td>
<td>9.8***</td>
<td>9.8***</td>
<td>9.7***</td>
<td>9.7***</td>
<td>9.6***</td>
</tr>
<tr>
<td>Ped. Motive</td>
<td>-4.7***</td>
<td>-4.4***</td>
<td>-4.8***</td>
<td>-4.8***</td>
<td>-4.4***</td>
<td>-4.7***</td>
<td>-4.4***</td>
</tr>
<tr>
<td>Subj. Motive</td>
<td>14.4***</td>
<td>13.6***</td>
<td>14.3***</td>
<td>14.3***</td>
<td>13.6***</td>
<td>14.1***</td>
<td>13.5***</td>
</tr>
<tr>
<td>Extr. Motive</td>
<td>-7.5***</td>
<td>-7.4***</td>
<td>-7.5***</td>
<td>-7.5***</td>
<td>-7.4***</td>
<td>-7.2***</td>
<td>-7.2***</td>
</tr>
<tr>
<td><strong>Institution</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTL math</td>
<td>34.1*</td>
<td>31.5*</td>
<td>25.9*</td>
<td>ns</td>
<td>ns</td>
<td>44.7**</td>
<td>31.9***</td>
</tr>
<tr>
<td>OTL math ped.</td>
<td>23.7*</td>
<td>ns</td>
<td>13.7†</td>
<td>ns</td>
<td>ns</td>
<td>31.9***</td>
<td></td>
</tr>
<tr>
<td>Teach method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.7**</td>
<td>31.9***</td>
</tr>
<tr>
<td><strong>R²</strong></td>
<td>24.6%</td>
<td>38.1%</td>
<td>29.5%</td>
<td>27.5%</td>
<td>40.7%</td>
<td>37.8%</td>
<td>46.3%</td>
</tr>
</tbody>
</table>
Class 1: Advanced university math
Class 2: Basic university mathematics
Class 3: School mathematics

OTL in mathematics in primary teacher education across 15 countries by class
(Blömeke & Kaiser, 2012)
### Two-level model of Swiss future primary teachers’ constructivist beliefs about teaching and learning regressed on teacher education

(Biedermann, Brühwiler & Krattenmacher, 2012)

<table>
<thead>
<tr>
<th></th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Constructivist beliefs</td>
<td>12.43</td>
<td>12.41</td>
<td>12.42</td>
<td>12.43</td>
<td>12.41</td>
</tr>
<tr>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTL math pedagogy</td>
<td>.46***</td>
<td>.23(*)</td>
<td></td>
<td>.54***</td>
<td></td>
</tr>
<tr>
<td>OTL school math</td>
<td>.23(*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTL pedagogy</td>
<td></td>
<td>-.06</td>
<td>-.17*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC₁</td>
<td>.07</td>
<td>.03</td>
<td>.05</td>
<td>.07</td>
<td>.02</td>
</tr>
<tr>
<td>Total R²</td>
<td>–</td>
<td>3.7%</td>
<td>1.6%</td>
<td>0.2%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Institutional R²</td>
<td>–</td>
<td>61.3%</td>
<td>27.7%</td>
<td>2.8%</td>
<td>64.6%</td>
</tr>
<tr>
<td>Deviance</td>
<td>6428.5</td>
<td>6415.3</td>
<td>6427.6</td>
<td>6432.7</td>
<td>6416.8</td>
</tr>
</tbody>
</table>
Class 1: novices in teaching
Class 2: autonomous teaching
Class 3: balanced experiences
Class 1: novices in teaching
Class 2: autonomous teaching
Class 3: balanced experiences

Teaching experience and GPK in Germany and USA
(König & Blömeke, 2012)
Assessment of teacher competence

Substantial research output of TEDS-M participants:

**Books/country reports**  Springer (2014), list on IEA website


**Symposia at conferences**  AERA 2011; EARLI 2011, 2013; ICME 2012; PME 2012, 2014

**PhD degrees and promotions to professorships**
Summary #2: TEDS-M was a serious research enterprise and a great success.

Both OTL *and* selectivity are relevant for teacher education outcomes.

If a broad range of outcomes is considered, OTL in math, math pedagogy and practical experiences matter.

SES is much less relevant than at the school level (threshold effect?).
TEDS-M triggered follow-up studies

\[ \text{MCK}_{t1} \rightarrow .68^{***} \rightarrow \text{MCK}_{t2} \]

\[ \text{MPCK}_{t1} \rightarrow .36^{***} \rightarrow \text{MPCK}_{t2} \]

\[ \text{GPK}_{t1} \rightarrow .05 \text{ (ns)} \rightarrow \text{GPK}_{t2} \]

End of teacher education (TEDS-M) 4 years later

(Blömeke et al., 2014; König et al., 2014)
TEDS-M triggered follow-up studies

Administrative Leadership
- Trust in Principal
  - Administrative Leadership
    - .55***
  - .33***
  - .42***

Teacher Autonomy
- Teacher Appraisal
  - Teacher Autonomy
    - .20*
  - .24**

Quality of Mathematics Instruction
- Generic Teacher Tasks
  - Quality of Mathematics Instruction
    - .44**

Job Satisfaction
- School management
  - Teacher support
    - Teacher quality
  - (Blömeke & Klein, 2013)

CEMO
Centre for Educational Measurement at the University of Oslo
TEDS-M triggered follow-up studies

(Blömeke, Gustafsson & Shavelson, in press)
TEDS-M triggered follow-up studies

Teacher knowledge
- MCK
- MPCK
- GPK

Teaching skills
- PERC
- INTER
- DEC
  M bzw. P

Instructional quality
- MATH
- COG
- SUPP
- CM

Student achievement
- DEV

(Blömeke et al., under review)
Summary #3: Nationally and internationally a boost of follow-up studies were triggered (incl. longitudinal studies and video-based performance assessments).

Teacher education effectiveness and school/teacher/teaching effectiveness re-align and provide a much more sophisticated view on predictors and context conditions of student achievement than prior to TEDS-M.
Thank you very much for your attention!

Sigrid Blömeke, sigribl@cemo.uio.no