
  U.S. Algebra 1 

Running head: U.S. ALGEBRA TEACHING AND LEARNING 

 

 

 

 

 

 

 

U.S. Algebra Teaching and Learning Viewed Internationally 

Jeremy Kilpatrick 

University of Georgia 

Vilma Mesa 

University of Michigan 

Finbarr Sloane 

Arizona State University 



  U.S. Algebra 2 

Abstract 

We use data from Trends in International Mathematics and Science Study (TIMSS) 

mathematics items to examine performance in elementary algebra in the United States from an 

international perspective.  U.S. eighth graders perform at about the same level in algebra as they 

do across all domains of mathematics, but their average performance masks considerable 

variation.  Because of extensive tracking, some U.S. eighth graders are taking a full year of 

algebra, and others are still studying arithmetic.  Other countries appear to introduce ideas of 

algebra somewhat earlier than the United States does, and they may be treating functions earlier 

and more intensively as well.  Using item data from TIMSS 1995, 1999, and 2003, we attempt to 

uncover variations in performance and to interpret the variations in light of curricular and other 

contextual information. 
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U.S. Algebra Teaching and Learning Viewed Internationally 

The college-preparatory high school curriculum in the United States is virtually unique in 

devoting two or three yearlong courses to algebra, with geometry given a separate year of its 

own.  In other countries, students study algebra and geometry (and other areas of mathematics) 

simultaneously, in either integrated mathematics courses or parallel strands.1  

Better US mathematics students during high school years take separate courses in 

geometry, pre-calculus, etc.  In most TIMSS [Trends in Mathematics and Science 

Study] countries, students take a course in mathematics—a course which may 

include studying parts of advanced algebra, geometry, finite mathematics, and 

calculus at the same time.  They may take such courses for several years.2

In international curricula, therefore, mathematics is seen more as an integrated whole than as 

subject matter that can be parsed by topic area without overt integration.  This curricular parsing 

is the same for weak and strong students in the United States.  The integration is left up to the 

student, a task many find difficult or fail to complete on their own. 

Another distinguishing feature of the U.S. curriculum is that, until recently, school 

algebra and geometry courses were seen as reserved for the elite—those heading for college—

and another set of courses, labeled with such terms as “general mathematics,” in which there was 

almost no attention to algebra or geometry, was offered to everyone else.  Consequently, algebra 

has typically been seen by Americans as a subject beyond the capacity of the average high school 

student. 

                                                 

1 Reys (2001, p. 255). 
2 William H. Schmidt, “Are There Surprises in the TIMSS Twelfth Grade Results?” Press Statement by 

William H. Schmidt, U.S. TIMSS National Research Coordinator, Michigan State University 
(http://ustimss.msu.edu/12gradepr.htm [February 1998]). 
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In this paper, after a brief examination of sources of the nature and structure of the U.S. 

algebra curriculum, we describe U.S. students’ performance in algebra through an analysis of 

TIMSS items on which they did well and did poorly, first in absolute terms and then in 

comparison with students in other countries.  This description, which takes into account several 

dimensions of the tasks, provides a picture of those aspects of algebra in which U.S. students, as 

a whole, are strong or weak, and how their performance compares with that of students in other 

countries.  This knowledge, by revealing patterns of performance, can suggest areas that might 

be the focus of curricular and instructional attention. 

History of U.S. Algebra Courses 

The layered course arrangement with tracking is a product of the history of college-

entrance requirements in the United States and has remained in place owing, in part, to the 

absence of a national curriculum authority that might have mandated a different arrangement.  

Arithmetic and geometry entered the Harvard curriculum during the 17th century and by the late 

18th century had become lower-division (freshman or sophomore) courses, whereas algebra, a 

relative newcomer, was being offered in the senior year.3  In 1787, Harvard reorganized its 

curriculum to put arithmetic in the freshman year and “algebra and other branches of 

mathematics”4 in the sophomore year.  U.S. universities started requiring arithmetic for 

admission, and some time before 1820, Harvard began to require algebra.  Other universities 

soon followed suit.  Not until after the Civil War, however, was geometry required for entrance.  

The order in which these mathematical subjects were first required for college entrance shaped, 

and continues to shape, the college-preparatory courses offered in secondary school, with each 

                                                 

3 The U.S. undergraduate curriculum is a four-year curriculum: freshman, sophomore, junior, and senior.  
For a fuller account of the formation of the U.S. secondary school mathematics curriculum, see Stanic and 
Kilpatrick (1992). 

4 Cajori (1890, p. 57). 
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new requirement acting like a geological stratum laid down by natural forces and pressing the 

courses required earlier into lower grades. 

Despite repeated efforts to combine algebra, geometry, and other mathematics topics into 

integrated mathematics courses, the U.S. first course in algebra—like the yearlong course in 

geometry—has kept its title and much of its form.5  Positioned for more than a century in the 

ninth grade, Algebra I recently began to move into the eighth grade,6 partly as a consequence of 

research showing that other countries were offering more algebra earlier than the United States 

was. 

Nonetheless, it is still the case that although algebra and geometry are important elements 

of the middle school curriculum in other TIMSS countries, U.S. middle schools tend to offer 

these topics to relatively few students.  “Compared to many other countries, the content taught at 

grade 8 in the United States is similar to the content taught at grade 7 elsewhere, and the 

performance expectations are lower in the United States.”7  The proportion of eighth graders 

taking the National Assessment of Educational Progress (NAEP) mathematics assessment who 

reported taking algebra rose from 20 percent in 1992 to 25 percent in 1996.8  In 2000, 31 percent 

of eighth graders reported taking prealgebra, and 26 percent reported taking algebra.9

Although the number of students taking advanced high school mathematics courses 

remains a minority, enrollments in such courses have grown rapidly.  From 1982 to 1998, the 

proportion of students taking mathematics courses beyond Geometry and Algebra II increased 

                                                 

5 Kilpatrick (1997). 
6 Steen (1999) 
7 Silver (1998, p. 3); see also Schmidt, Wang, and McKnight (2005). 
8 U.S. Department of Education (1997, p. 17). 
9 National Assessment Governing Board (2004, p. 10). 
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from 26 percent of all high school graduates to 41 percent.10  By 2000, it was 45 percent.11  Such 

growth suggests that the number of students beginning the study of algebra in eighth grade is 

likely to continue to increase. 

History of U.S. Approaches to School Algebra 

School algebra in the United States has taken on a variety of forms even as it has 

remained enshrined in separate yearlong courses.  When it entered the high school curriculum, 

algebra was largely an extension and generalization of school arithmetic.  It was built up by 

induction on a base of numerical quantities and operations on them.  As the 19th century drew to 

a close, school algebra, like other subjects, came under the influence of so-called faculty 

psychology, which saw the mind as comprising separate faculties or powers.  To exercise those 

powers, students needed to drill and practice their algebraic skills, and teachers and textbook 

writers were happy to provide ample opportunity for such activity.  School algebra came to be 

seen as a purely mathematical discipline, with little or no practical value. 

Meanwhile, other countries, especially those in Europe, were being influenced by 

developments in mathematics, and particularly by the proposal of the German mathematician 

Felix Klein to use the function concept as a basis for developing not simply algebra but the entire 

secondary mathematics curriculum.  The function concept had some advocates in the United 

States, but it was very much a minor influence.  Algebra as generalized arithmetic was the 

mainstream approach until the new math movement began to influence the U.S. curriculum in 

the early 1960s.  Algebra was only then recast as a more abstract subject, with functions playing 

a central role and using definitions based on set theory. 

                                                 

10 Wirt and others (2002, p. 85). 
11 Wirt and others (2004, p. 70). 
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Recent developments in the U.S. school mathematics curriculum suggest that an 

approach to algebra as the study and use of functions rather than as simply equation solving and 

manipulation of expressions may be gaining ground.12  The approach, however, is different from 

the set-theoretical approach taken during the new math era.  Functions are introduced as rules for 

connecting one number to another, with equations used to model sets of data for the purpose of 

solving problems.  This new approach makes heavy use of technology, especially to capitalize on 

its ability to manipulate linked tabular, symbolic, and graphical representations of functions.  

Students can work with complicated equations that would be difficult, if not impossible, to 

represent or solve using paper and pencil alone.  This modeling approach to algebra, although 

growing, is still very much a minor theme in U.S. school mathematics. 

U.S. Students’ Performance in Algebra 

Evidence from a variety of national and international assessments suggests that, in 

general, U.S. students perform at about the same level in algebra as they do in other domains of 

mathematics.  The evidence from TIMSS 1995, 1999, and 2003 suggests as well that their 

performance in algebra (on items classified as algebra or at fourth grade as patterns, functions, 

and relations) is about average compared with that of students in other countries.  Their 

performance in algebra contrasts with their performance in geometry and measurement, which 

has tended to be weaker than that of students in other countries, and in probability and statistics, 

which has tended to be stronger.13  From 1999 to 2003, U.S. eighth graders gained significantly, 

                                                 

12 See, for example, Star, Herbel-Eisenmann, and Smith (2000). 
13 This claim is based on analyses by Mary M. Lindquist and Jeremy Kilpatrick for the National Council of 

Teachers of Mathematics that were posted anonymously on the NCTM Web site immediately after each release of 
TIMSS data from the 1995, 1999, and 2003 assessments (e.g., see 
http://www.nctm.org/news/releases/1996/timss_eighth_grade.htm).  See also Bybee and others (2005) and Ginsburg 
and others (2005). 
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on average, in their performance on TIMSS items classified as dealing with algebra and with 

data.14

U.S. students’ average level of performance, however, masks considerable variation, in 

large part because of the extensive tracking already noted.  Some U.S. eighth graders, for 

example, are taking a full year of algebra, whereas others are still studying arithmetic.15  Below 

we report the results of analyses of TIMSS data that attempt to uncover and disentangle some 

facets of U.S. students’ performance in algebra. 

Item Characteristics 

Most of our discussion is based on item data, which requires that we identify TIMSS 

items that appear to be related to algebra and algebraic thinking.  We have also attempted to 

characterize the thinking those items entail. 

Content and Representation Classification 

In selecting TIMSS items for analysis, we attended to two dimensions: the algebra-

related content knowledge that the item seemed to demand and the representations used in 

presenting the item and solving the problem.  To determine the content, we examined the items 

classified by TIMSS as either “algebra” or “patterns, relations, and functions.”  To make a finer 

classification, we used a scheme developed for National Assessment of Educational Progress 

(NAEP)16 items and added the category “algebraic manipulation” (see Table 1 for a description). 

_________________________________________________________________ 

Insert Table 1 about here 

_________________________________________________________________ 

                                                 

14 Gonzales and others (2004, p. 10). 
15 Kilpatrick, Swafford, and Findell (2001, p. 280). 
16 See Kilpatrick and Gieger (2000).  The classification was created for an analysis of items from a special 

NAEP study of eighth graders who were taking or had taken algebra. 
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Table 1 

Descriptors of TIMSS Algebra Items 

Content Category Item Description 
Patterns Find the next several numbers in a given pattern and write the rule 

Extend a pattern of sums and choose the correct answer 
Informal algebra Select the solution to an equation presented pictorially 

Choose a value that satisfies an arithmetic relationship 
Equations Solve an equation 

Determine the solution to a linear equation in two variables 
Solve a linear equation in two variables for one variable in terms of 
the other 
Determine which equation in two variables fits the values given in a 
table 

Inequalities Choose a value that satisfies a simple linear inequality 
Functions From a verbal description, select an expression for a linear function 

described in a realistic context 
Identify a rule relating two variables or sets of numbers 
Using a graphical representation, deduce the value of one variable 
given the other 

Algebraic reasoning Given information about pairwise relationships between quantities, 
draw a conclusion about their order 
Given a linear function, draw a conclusion about the effect of a 
change in either x or f(x) on the other 

Algebraic manipulation Transform an expression by means of symbolic manipulation 
Identify an expression that corresponds to a verbal statement 
Interpret a variable 

 

To describe the type of representation entailed in an item, we used the following 

categories: numerical, verbal, graphical, symbolic, and pictorial (with N, V, G, S, and P, 

respectively, as codes).17  Each item received two codes: one to identify the representation used 

to present the item, and a second to identify the representation needed for the response.  For 

multiple-choice items, the choices were used to establish the representation sought.  For 

constructed-response items, we analyzed the rubrics to see which types of representation were 

considered correct. 

                                                 

17 These categories are used by NAEP (National Assessment Governing Board, 2004, p. 34) to describe 
forms of algebraic representation; we have combined forms used at Grades 4, 8, and 12. 
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Cognitive Demand 

In addition to using content and representation characteristics, we classified items in 

terms of cognitive demand using the notion of content-process space.18  Originally designed to 

classify assessment items in science, this framework attempts to describe knowledge that is 

meaningfully organized—that is, knowledge that employs four cognitive activities: problem 

representation (using underlying principles and relevant concepts), strategy use (efficient, 

informative, and goal oriented), self-monitoring (ongoing and flexible), and explanation 

(principled and coherent).19  Although every task in an assessment does not necessarily have all 

four characteristics, an examination of the affordances (action possibilities) of each task allows 

one to determine how demanding it is in terms of the quality of the content addressed and the 

type of processes required. 

In the content-process space, tasks can be classified along two dimensions characterized 

by their poles: (1) rich versus lean content, and (2) open versus constrained process.  The 

location of the task “is related to the nature and extent of cognitive activity underlying 

performance,”20 and therefore, the space provides a good device for describing cognitive task 

demand.  Figure 1 below shows the space and defines four quadrants, each of which helps in 

characterizing the demand.  Although it is reasonable to assume that, in general, students would 

be more likely to do well on items in Quadrant III than on those in Quadrants I or II, the pattern 

of performance across the four quadrants may be useful in revealing some of the strengths and 

weaknesses of the curriculum. 

_________________________________________________________________ 

                                                 

18 Baxter and Glaser (1998). 
19 Baxter and Glaser (1998, p. 38). 
20 Baxter and Glaser (1998, p. 38). 
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Insert Figure 1 about here 

_________________________________________________________________ 

  Content dimension 
  

 
Quadrant II: Activities that are 
rich in content but more 
process constrained—tend to 
measure specific content in 
particular settings 
 

Rich 
 
Quadrant I: Activities that are 
rich in content and open in 
process—tend to be complex 
open-ended tasks that require 
extensive mobilization of 
information 

Process  
dimension 

Constrained 
Quadrant III: Activities that 
are lean in content and process 
constrained—tend to assess 
factual knowledge 
  

Open
Quadrant IV: Activities that 
are lean in content with a 
more open process—tend to 
assess originality or creativity 
 
Lean 

Figure 1.  Content-process space (Baxter and Glaser, 1998). 

Absolute Performance 

In a first look at U.S. students’ performance, we consider just those algebra items that at 

least 75 percent of the students got correct, and then those that no more than 25 percent got 

correct, quite apart from how students in other countries did on the items.21

High-Performance Items (p ≥  .75) 

Across the three cycles of TIMSS testing (1995, 1999, and 2003), we identified 13 

released items (out of 81 classified as algebra-related) and 12 secure items (out of 76 classified 

as algebra-related) that were answered correctly by 75 percent or more of the U.S. students in the 

sample.  Table 2 shows the distribution of items across cycles and grades. 

_________________________________________________________________ 

Insert Table 2 about here 
                                                 

21 The “least difficult quartile” and “most difficult quartile” are item categories used by Ginsburg and 
others (2005). 
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_________________________________________________________________ 

Table 2 

Distribution of TIMSS High-Performance Algebra Items (p ≥  .75) 

Grade 1995 1999 2003 Total 
  Released Items   
4 1 - 3 4 
8 2 4 2 8 
12 1 - - 1 
  Secure Items   
4 1 - 3 4 
8 2 1 5 8 
12 0 - - 0 

 

Low-Performance Items (p ≤  .25) 

We identified 7 released items (out of 81 classified as algebra-related) and 9 secure items 

(out of 76 classified as algebra-related) that were answered correctly by 25 percent or less of the 

U.S. students in the sample.  Table 3 shows the distribution of items across cycles and grades. 

_________________________________________________________________ 

Insert Table 3 about here 

_________________________________________________________________ 

Table 3 

Distribution of TIMSS Low-Performance Algebra Items (p ≤  .25) 

Grade 1995 1999 2003 Total 
  Released Items   
4 0 - 1 1 
8 2 0 3 5 
12 1 - - 1 
  Secure Items   
4 0 - 2 2 
8 0 1 6 7 
12 0 - - 0 
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Below we discuss, for each TIMSS cycle, the content and representation of the released 

items for which performance was high, followed by their cognitive demand.  We then do the 

same for those released items for which performance was low.  We tried as best we could to 

categorize and analyze the secure items using item descriptions alone to see if performance on 

them followed the same patterns as on the released items, but we eventually decided that the 

results were too speculative to report here.  Therefore, the analyses described here draw on the 

released items only.  We present these analyses in the chronological order of the TIMSS cycles 

(1995, 1999, and 2003). 

High-Performance Items  

1995 Items 

Content and representation.  The one fourth-grade item, Item L04, that was classified as 

high performance in 1995 asks the student to identify a sequence of symbols that behaves like a 

given sequence.  The content was coded as patterns, and the representation was coded as P→P 

because both the stem and the choices use a pictorial representation. 
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The two high-performance eighth-grade items in 1995 were also patterns items, both of 

which were also administered to fourth graders.  Item L13 is the same as Item L04 above. 

Item S01a is the first part of a two-part constructed-response item.  A sequence of three 

triangles composed of congruent smaller triangles was shown (below): 

 

The item asked the student to complete a table by giving the number of triangles composing the 

second and third figures (a counting task). 

The one 1995 high-performance item for twelfth graders was Part (a) of Item D15.  

Students are given the graph of time versus speed for a driver who brakes for a cat and then 

returns by a shorter route.  In Part (a), students read from the graph to find out the maximum 

speed of the car. 
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We coded this item’s content as dealing with functions (because of the relationship between two 

variables—time and speed—depicted in the graph).  It used graphical and verbal representations 

in the stem, and required only a numerical approach (finding the highest point and its measure on 

the y-axis).  We coded the item representation as VG→N. 

Cognitive demand.  We did not classify as highly demanding the items on which the U.S. 

students performed well in absolute terms in 1995.  The processes for solving these items 

successfully are quite constrained: reading a simple graph, correctly continuing a pattern, or 

recognizing it.  Items L04, L13, and S01a require mathematical knowledge that is taught in the 

early grades (e.g., pattern recognition in pictorial form; counting figures).  Item D15a, in 

contrast, despite being process constrained, requires knowledge that is acquired only in 

mathematics classrooms and that is very specific to functional representation.  To solve the 

problem, students must know about graphical interpretation, understand that the representation 

also explains features of the situation, and observe that the graph also provides a means of 

monitoring the correctness of the answer. 
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1999 Items 

Content and representation.  In 1999, at least 75 percent of U.S. students—all in the 

eighth-grade population, the only populated assessed—gave a correct response to four released 

items (as shown in Table 2).  Two of the items, B12 and H12, have the same descriptions as two 

eighth-grade secure items from 1995.22  Item B12 in 1999 makes a statement about n (When n is 

multiplied by 7, and 6 is then added, the result is 41) and asks students to choose the 

equation that represents the relation.  Item H12 provides a situation in words that needs to be 

modeled with an arithmetic expression (□ represents the number of magazines Lina reads 

each week), and students are asked to choose the expression that represents the total number of 

magazines she reads in 6 weeks.  The choices are arithmetic expressions with □ as an operand.  

Both items use a verbal representation for the statement, but H12 requires recognizing a pre-

symbolic representation (□ instead of x).  We classified the representations of both, however, as 

V→S.  The other two high-performance items in 1999 correspond to identifying a number that 

satisfies a proportionality relationship (Item D8: The ratio of 7 to 13 is the same as the ratio 

of x to 52; what is x?) and identifying a symbolic expression for n × n × n (Item P9). 

Altogether, the 1999 items on which the US students performed well deal with basic 

algebraic situations in which students use notions from elementary algebraic for the solution.  

These items tend to involve symbolic representations of verbally presented situations. 

Cognitive demand.  In terms of content, the high-performance 1999 items require the use 

of knowledge that is taught in the middle grades, with the exception perhaps of item H12, which 

seeks an arithmetic expression that might well have been encountered in the earlier grades.  In 

terms of complexity, Item D8 is probably the most demanding of the group; it involves the use of 
                                                 

22 The items have the same IDs as the 1995 items and are likely to be identical to their secure counterparts 
in view of the TIMSS policy of writing new items and releasing some secure items for each successive cycle. 
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multiplicative reasoning, which is known to be a difficult conceptual transition for students.23  

The other items ask students to identify a model that matches a given statement, but in Item D8 

students might perform any of a number of procedures to get the answer (e.g., use the “rule of 

three,” identify that 52 is obtained by multiplying 13 by 4 and then multiply 7 by 4, or write an 

equation and then cross multiply and simplify).  The process in D8, therefore, is less constrained 

than in the other items. 

2003 Items24

Content and representation.  In 2003, there were three high-performance items at fourth 

grade (Table 2): Items M03_11, M04_04, and M04_05.  Item M03_11 asked students to give the 

three numbers that continue the pattern 100, 1, 99, 2, 98, __, __, __. 

Item M04_04 gives students a table with three times at which a movie starts.  The student 

is asked to find the start time for the fourth show assuming that the pattern continues. 

Item M04_05 presents a situation verbally (“Ali had 50 apples.  He sold some and 

then had 20 left”).  The student is asked to identify the expression (with □ for the unknown 

number of apples sold) that fits the situation.  Note that this item is essentially parallel to Item 

H12 (Lina’s magazines) described above 

The two eighth-grade high-performance items in 2003 (Table 2) were M01_10 and 

M03_01.  In Item M01_10, the student is given an equation—12/n = 36/21—and asked to 

determine the value of n. 

                                                 

23 Vergnaud (1994). 
24 In 2003, there was a strong position effect for some TIMSS items because they appeared in different 

positions in the booklets.  “Some students in all countries did not reach all the items in the third block position, 
which was the end of the first half of each booklet before the break.  The same effect was evident for the sixth block 
position, which was the last block in the booklets.”  Mullis, Martin, and Diaconu (2004, p. 248).  Items in the third 
and sixth block positions were treated in TIMSS scale analyses as if they were unique, but we were advised not to 
include those items in our study.  Personal communication from Joe Galia, TIMSS & PIRLS International Study 
Center, Boston College, October 11, 2006. 
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Item M03_01 presents a graph of time versus distance for two hikers.  The student was 

asked to find the time at which the two hikers meet, given that they started from the same place 

and headed in the same direction. 

Cognitive demand.  Like the 1995 items, the 2003 released high-performance items 

mainly addressed elementary notions of patterns and pre-symbolization work.  Unlike the 1999 

items, they did not include algebraic manipulation.  As before, the fourth-grade items were less 

demanding than the eighth-grade items.  The 2003 items required factual knowledge for which 

instruction was necessary (e.g., for dealing with an equation with fractions in which one 

denominator is unknown, for interpreting a graph, for operating with time).  There were at least 

two ways by which students could solve Item M01_10: by cross-multiplying or by using a 

multiplicative argument.  Because of these two possibilities, we considered the item to be less 

process constrained than the other four. 

Summary of High-Performance Items 

Table 4 provides summary data on the four released high-performance items in 1995, the 

four in 1999, and the five in 2003.  For each item, we provide the item number and the grade at 

which it was administered.  We also provide our classification of the item content, the item 

representation, and the quadrant of the item’s cognitive demand.  Finally, we give the percent 

correct for U.S. students given the item. 

_________________________________________________________________ 

Insert Table 4 about here 

_________________________________________________________________ 

Table 4 

Summary Data on Released High-Performance Items for Each TIMSS Cycle 

Item Grade Content Representation Quadrant U.S. %Correct 
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  1995    
L04 4 Patterns P→P III 79 
L13 8 Patterns P→P III 93 
S01a 8 Patterns P→N III 75 
D15a 12 Functions VG→N II 85 

  1999    
B12 8 Equations V→S III 78 
D8 8 Informal algebra V→N I 78 
H12 8 Informal algebra V→S III 86 
P9 8 Algebraic manipulation S→S III 85 

  2003    
M03_11 4 Patterns N→N III 91 
M04_04 4 Patterns N→N III 83 
M04_05 4 Informal algebra V→S III 84 
M01_10 8 Equations S→N IV 80 
M03_01 8 Functions VG→N IV 80 

 

Across TIMSS cycles and grades, most of the 13 released high-performance items deal 

with patterns or informal algebra rather than other content.  They most commonly involve 

numerical representations, especially numerical solutions, and they rarely involve graphical 

representations—never without accompanying verbal content.  Regarding the content-process 

space classification, the items tend to be those in which the content is relatively lean and the 

process relatively constrained (Quadrant III).  The one item that is both rich and open 

(demanding), under this classification, is Item D8, an item on proportionality from 1999. 

Low-Performance Items 

1995 Items 

Content and representation.  In 1995, the three items that were answered correctly by no 

more than 25 percent of the students who were given the item (Table 3) were the following: 

Items A10, S01b, and T01a.  Item A10 was a mathematics literacy item given to twelfth graders.  

It gave a pair of axes and an unmarked 16-by-11-square grid, and the student was asked to sketch 

a graph, with labeled axes and a realistic scale, to represent the relationship between a person’s 
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height and age from birth to age 30.  The rubric looked for correct labeling of axes, sensible 

scales, and an adequate growth curve in terms of the two variables. 

Items S01b and T01a were eighth-grade items.  We noted above that U.S. students did 

very well on Part (a) of S01 (which required the student to count the small triangles composing a 

larger triangle).  In Part (b) of Item S01, the student is asked to extend the pattern and determine 

the number of small triangles in the eighth triangle in the sequence.  The rubric does not indicate 

that the student needed to come up with a formula for the number of triangles, nor does it suggest 

that the student use an iterative process to arrive at the solution. 

Item T01a asked the student to solve a word problem involving apples in boxes: There 

are 54 kilograms of apples in two boxes. The second box of apples weighs 12 kilograms 

more than the first. How many kilograms of apples are in each box?  Although the 

students could have used some symbolic manipulation, the rubric did not suggest that as a 

possibility. 

Cognitive demand.  A major difference between Item A10 and Item D15 (the high-

performance twelfth-grade item from 1995 given and discussed above) is that in Item A10 the 

student had to produce a graph for the situation, a much more difficult task than simply reading 

the graph.25  Although the functional relation—that is, that height increases with age—may not 

be necessarily acquired in a mathematics class, the techniques and processes for creating a 

representation of the problem are.  The process for arriving at a particular graph may be limited 

to recalling milestones or turning points in growth and plotting them on the graph 

Similarly, the difference between Items S01a and S01b resides in the extension of the 

sequence of triangles in Item S01b to a step in which the student should either formulate a 

                                                 

25 Kilpatrick, Swafford, and Findell (2001, p. 290). 
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general rule or develop a strategy for systematically counting the triangles at each step.  The item 

can be conceived of as testing the relationship between area and length in similar figures: 

Altering the lengths of a figure by a factor a affects the area of the resulting similar figure by a 

factor of a2.  The item can also be conceived of as being about summing the elements in a 

sequence in which each new figure increases the number of small triangles by an odd number: 

a1 = 1, a2 = 1 + 3; a3 = 1 + 3 + 5; so the item might be testing whether students could demonstrate 

that Σ i = 1, n (2i − 1) = n2 and find the result for n = 8.  Students might know this relationship 

already, and then the process would be direct recall.  Or in the absence of such knowledge, 

students might simply calculate each term up to the eighth.  The item can also be interpreted as 

involving a straightforward pattern table in which each second term is the first term squared.  

Which path a student took might depend on many circumstances.  The TIMSS rubric suggests 

that the important aspect was the final response (64).  Because the item requires understanding 

principles governing these figures, it is a relatively rich, and the process is less constrained than 

in Part (a). 

Item T01a requires the identification of the two variables (the number of kilograms in 

each box) and taking into account the constraints on them (altogether there are 54kg, and the 

difference is 12kg).  To respond correctly to the item, a student must know that the two variables 

are related.  The item has the form of a classic problem: The sum of two numbers is a; the 

difference is b; what are the numbers?  Independently of whether students choose to represent 

the variables with a symbol (e.g., x and y), they know that the combined weight is 54 (or x + y = 

54).  They also know that one box weighs more than the other (y = x + 12).  Thus, 2x + 12 = 54, 

or x = 21, and therefore, y = 33.  Another approach consists of assuming that the two boxes 

weighed the same (27kg).  Because the difference in weights is 12, 6 kg need to be taken from 
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one box and put into the other; thus there will be 27 − 6 = 21kg in one box and 27 + 6 = 33kg in 

the other.  A student might also use trial and error; that is, looking at how 54 can be decomposed 

into two integers and taking the pair whose difference is 12 (of course, that process can also be 

modeled with symbols).  These approaches require a level of sophistication that is probably 

beyond most students.  The item also asks students to show work, which only adds to its 

complexity.  The TIMSS rubric credits only the final numerical response as correct and penalizes 

students when no explanation is provided. 

1999 Items 

There were no released items in 1999 on which the performance of U.S. students was low 

(Table 3). 

2003 Items 

Content and representation.  There were four released items in 2003 to which no more 

than 25 percent of U.S. students responded correctly (Table 3).  One item, Item M09_04, was 

given to fourth graders.  It reads as follows: 

37 × □ = 703.  What is the value of 37 × □ + 6? 

The other three low-performance items were given to eighth graders.  In Item M04_01, 

the student is given an equation for determining the sum of three consecutive even numbers that 

add to 84—k + (k + 2) + (k + 4) = 84—and is asked what k represents.  The choices are the 

following: the least of the three numbers, the middle number, the greatest number, or the 

average. 

Item M04_10c is Part (c) of an item containing three figures: The first is a square with a 

diagonal forming 2 triangles; the second is a square whose sides are twice as long and which 
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contains 4 smaller squares, and therefore 8 triangles; and the third is a square whose sides are 

three times the sides of the first square, so it contains 9 squares and 18 triangles: 

 

The item is similar to Item S01 in 1995.  It has essentially the same problem setup except that it 

involves twice as many triangles.  Part (a) asks for the number of triangles for the third figure in 

the sequence (a counting exercise) and the fourth figure (either an addition task or, if the general 

rule has already been obtained, an application of that rule).  Part (b) asks for the number of 

triangles in the seventh figure (72 × 2), and Part (c) requests an explanation of how to obtain the 

50th figure “that does not involve drawing it and counting the number of triangles.”  From that 

request, we infer that the item is asking for an explicit relationship between the number of the 

figure in the sequence and the number of small triangles in that figure.  It is not asking the 

student simply to extend the pattern or to find the next three elements in the sequence; instead, it 

is asking for the function itself.  The TIMSS rubric indicates that any of the following should be 

considered correct: 2n2, 2 × 50 × 50, 100 × 50, (50 + 50) × 50, 2 × 502, or the equivalent 

expressed in words.  Partially correct answers are accepted if the final number is correct. 

Item M09_06 states a situation in words involving quantities and costs of two types of 

fruit and explicitly requests two equations that could be used to find the values of each variable 

(number and cost). 

Cognitive demand.  For all four low-performance items in 2003, the complexity was 

relatively high.  For example, to correctly solve the problem in Item M09_04, students must 
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understand that the equal sign is bidirectional and that an equation relates two objects.  They also 

must know that to maintain the equation, what one does on one side must be done on the other 

side, which indicates that, in this case, the answer should be 703 + 6.  At a grade—in this case, 

fourth grade—in which most of the students’ arithmetical work deals with operations, the 

transition to a conception of the equal sign as representing the same quantities is difficult.26  

Arithmetic and arithmetic sentences are very much involved with doing—with processes 

associated with operating on numbers.  Moving towards a more static view of the equal sign and 

seeing expressions linked by that sign as forming an equation constitute a major step toward 

conceptualizing equations as objects 

Item M04_01 is an unusual item that asks students to consider a symbolic expression and 

decide on the meaning of the variable.  A more common item would have asked the student to 

find the three numbers, not to give the meaning of the variable.  The item draws on students’ 

knowledge of the meaning of algebraic symbols and knowledge of their relation to expressions 

and equations.  That is knowledge for which instruction is necessary, and it requires familiarity 

with problem representation, but the process is constrained. 

The remaining two items, Items M04_10 (sequence of triangles) and M09_06 (number 

and cost), require more substantial knowledge.  Both are constructed-response items and give 

students the opportunity to select the process by which they will respond.  The first item asks for 

an explanation of how to find a number, and the second asks for two equations that fit a given 

situation.  Both require the coordination of basic knowledge and principles. 

                                                 

26 Kieran (1981). 
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Summary of Low-Performance Items 

Table 5 provides summary data on the three released low-performance items in 1995 and 

the four in 2003.  For each item, we provide the item number and the grade at which it was 

administered.  We also provide our classification of the item content, the item representation, and 

the quadrant of the item’s cognitive demand.  Finally, we give the percent correct for U.S. 

students given the item. 

_________________________________________________________________ 

Insert Table 5 about here 

_________________________________________________________________ 

Table 5 

Summary Data on Released Low-Performance Items for Each TIMSS Cycle 

Item Grade Content Representation Quadrant U.S. %Correct 
  1995    

A10 12 Functions V→N I 11 
S01b 8 Patterns P→N I 25 
T01a 8 Equations V→S II 25 

  1999    
      
  2003    

M09_04 4 Equations S→N II 7 
M04_01 8 Algebraic manipulation VS→V II 23 
M04_10 8 Functions PN→N or PN→S I 22 
M09_06 8 Equations V→S I 20 

 

Across TIMSS cycles and grades, the seven released low-performance items tend to deal 

with equations or functions rather than other content.  They mostly involve a variety of 

representations apart from graphical ones.  With respect to the content-process space 

classification, the items on which U.S. students did not do well in the various TIMSS cycles are 

all rich in content, and most are open in process. 
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Whether an item is responded to correctly by at least 75 percent of U.S. students or by no 

more than 25 percent, however, tells only part of the story of their performance in algebra.  Even 

when U.S. students showed high levels of performance, students in other countries often 

outperformed them, and when U.S. students showed low levels of performance, students in other 

countries performed about the same as or did not do as badly as their U.S. peers.  We turn now to 

the analysis of relative performance. 

Relative Performance 

To analyze performance across TIMSS 1995, 1999, and 2003, we chose a set of systems 

representing comparably developed countries that participated in TIMSS and for which we had 

complete data.  The following countries, all of which are members of the Organisation for 

Economic Cooperation and Development (OECD), met the criteria for participation: For 1995 

and 1999, the countries were Australia, Canada, the Czech Republic, Hungary, the Netherlands, 

New Zealand, and the United States.  For 2003, Ontario and Quebec participated as separate 

systems; they replaced Canada and the Czech Republic. 

Relative-High-Performance Items 

We considered the United States to have high performance on an item when it ranked 

first or second among the seven OECD countries.  Across the three cycles, we identified 11 

released items (out of 81 classified as algebra-related) and 9 secure items (out of 76 classified as 

algebra-related) in which the performance of U.S. students ranked first or second.  As before, 

although we looked at performance on the secure items, we do not discuss it here.  Table 6 shows 

the distribution of the 20 items across cycles and grades. 

_________________________________________________________________ 

Insert Table 6 about here 
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_________________________________________________________________ 

Table 6 

Distribution of TIMSS Relative-High-Performance Algebra Items 

Grade 1995 1999 2003 Total 
  Released Items   
4 2 - 4 6 
8 1 1 3 5 
12 0 - - 0 
  Secure Items   
4 2 - 2 4 
8 0 2 3 5 
12 0 - - 0 

 

Relative-Low-Performance Items 

We considered the United States to have low performance on an item when it ranked last 

among the seven OECD systems in each cycle.  Across the three cycles, we identified 17 

released items (out of 81 classified as algebra-related) and 18 secure items (out of 76 classified 

as algebra-related) in which the performance of U.S. students ranked last.  Table 7 shows the 

distribution of the 35 items across cycles and grades. 

_________________________________________________________________ 

Insert Table 7 about here 

_________________________________________________________________ 

Table 7 

Distribution of TIMSS Relative-Low-Performance Algebra Items 

Grade 1995 1999 2003 Total 
  Released Items   
4 0 - 0 0 
8 8 5 4 17 
12 0 - - 0 
  Secure Items   
4 0 - 2 2 
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8 3 4 7 14 
12 2 - - 2 

 

Below we discuss, for each TIMSS cycle, the content, representation, and cognitive 

demand of the released items for which performance was relatively high.  We then do the same 

for those released items for which performance was relatively low. 

Relative-High-Performance Items 

1995 Items 

There were two items, K03 and L09, at fourth grade on which U.S. students ranked first 

or second in 1995 compared with the other six countries.  Item K03 was the following: 

Which pair of numbers follows the rule “Multiply the first number by 5 to 

get the second number”? 

A. 15→3 

B. 6→11 

C. 11→6 

D. 3→15. 

The student can either recognize the pair as a fact (and make sure to consider the pair in the right 

order) or can check each choice to see whether the second number was obtained when the first 

was multiplied by 5.  Although the content concerns an arithmetic operation, the idea of using 

one value to obtain another, as in a function machine, is more complex than simply asking for 

the product of 3 and 5.  The notation can also be considered novel.  The United States had 65 
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percent of its fourth graders responding correctly, which was just behind Hungary, which had 68 

percent correct.  That difference,27 however, is not statistically significant (z = .92, p > .05). 

Item L09 reads as follows: 

Henry is older than Bill, and Bill is older than Peter.  Which statement must be 

true? 

A. Henry is older than Peter. 

B. Henry is younger than Peter. 

C. Henry is the same age as Peter. 

D. We cannot tell who is oldest from the information. 

In terms of the cognitive demand, the activity seems constrained (list the names H, B, P; order 

them according to the given statements H > B; B > P; and use transitivity to answer the question, 

H > P).  The item, however, requires a clear understanding of an important property of natural 

numbers—that is, transitivity—which is content that students may not be likely to learn without 

instruction. 

In the eighth-grade assessment in 1995, there was only one item, P15, in which the U.S. 

students’ performance was relatively high: second of seven countries.  The item reads as follows: 

Which of these expressions is equivalent to y3? 

A. y + y + y 

B. y × y × y 

C. 3y 

                                                 

27 We used the following formula for the difference between two proportions taken from independent 
populations: z = (p1 − p2)/sqrt (SE1

2 +SE2
2), where pi is the proportion of students who responded correctly to the 

item in country i, and SEi is the standard error for that item and country.  z ~ N (0, 1).  We understand the problems 
raised by multiple comparisons of proportions and are running additional tests to be reported in the final draft.  We 
do not expect the results of those tests, however, to change our findings. 
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D. y2 + y 

1999 Items 

There was only one relative-high-performance item in 1999, Item P09 (discussed above 

in the section on absolute performance).  Like all the items in that assessment cycle, it was given 

to eighth graders only. 

2003 Items 

There were seven released items for which the performance of U.S. students ranked first 

or second among the seven systems in 2003: Items M01_12, M03_11, M04_04, and M04_05 at 

fourth grade; and Items M01_12, M04_04, and M09_05 at eighth grade. 

In the fourth-grade item M01_12, students are given a sentence in words about the 

number of magazines a child reads in a week, and the item asks students to select the expression 

that would give the number of magazines read in 6 weeks.  The item uses a verbal representation 

in stating the task, but requires the use of semi-symbolic expression (□) and various operations 

with 6 for the answer.  The process is constrained, and students need to use some arithmetic 

reasoning to select the appropriate equation.  Item M03_11 was the number pattern item given to 

fourth graders that was discussed in the section on absolute performance, as were Items M04_04, 

the item containing a table of movie start times, and Item M04_05 (Ali’s apples). 

Item M01_12, one of the three items given to eighth graders in 2003 on which U.S. 

students’ performance was relatively high, reads as follows: 

If x = -3, what is the value of -3x? 

A. -9 

B. -6 

C. -1 
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D. 1 

E. 9 

The process used to solve the item is constrained (direct substitution), but the content—

manipulation of negative numbers and substitution of a variable that takes a negative value into 

an expression that has a negative sign (therefore changing the sign of the expression)—makes it 

require the mobilization of important underlying principles. 

Item M04_04 is another 2003 item for which the performance of U.S. eighth graders was 

relatively high.  The item reads as follows: 

The numbers in the sequence 7, 11, 15, 19, 23, … increase by four.  The 

numbers in the sequence 1, 10, 19, 28, 37, … increase by nine.  The 

number 19 is in both sequences.  If the two sequences are continued, 

what is the next number that is in BOTH the first and the second 

sequences? 

The process used in responding to the item is not very constrained: Students may take the trouble 

to extend each pattern to find the next number common to both sequences, or they may recall 

that the greatest common multiple of the two numbers, 36 (because 4 and 9 are relatively prime), 

gives the next common number after 19 (that is, 36 + 19).  They may instead notice that for the 

two sequences to meet again, their jumps must catch up with each other, which happens after the 

first sequence has jumped nine times and the second sequence has jumped four times; that is, 36 

units after 19.  In any case, the mobilization of knowledge and principles is great.  The task 

requires some reasoning about sequences even if the patterns are simply extended. 

On Item M09_05, the third item on which the performance of U.S. eighth graders in 2003 

was relatively high, was difficult for students in every country.  The item gives the student an 
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algebraic expression, y = 3x + 2, and asks which choice expresses x in terms of y.  The process 

is constrained, and the techniques for solving the problem are among the strategies needed in 

manipulating algebraic expressions. 

Summary of Relative-High-Performance Items 

Table 8 provides summary data on the three released relative-high-performance items in 

1995, the one in 1999, and the seven in 2003.  For each item, we provide the item number and 

the grade at which it was administered.  We also provide our classification of the item content, 

the item representation, and the quadrant of the item’s cognitive demand.  Finally, we give the 

countries ranking first and second, along with the percent correct for each country and the results 

of a statistical test of the difference between percents. 

_________________________________________________________________ 

Insert Table 8 about here 

_________________________________________________________________ 

Table 8 

Summary Data on Released Relative High-Performance Items for Each TIMSS Cycle 
Item Grade Content Represen-

tation 
Quad-
rant 

Rank 1 1st % 
correct 

Rank 2 2nd % 
correct 

p 

    1995      
K03 4 Functions V→N II Hungary 68 U.S. 65 n.s. 
L09 4 Algebraic 

reasoning 
V→V II U.S. 73 Australia 70 n.s. 

P15 8 Algebraic 
manipulation 

S→S III Czech 
Republic 

85 U.S. 74 < .01 

    1999      
P09 8 Algebraic 

manipulation 
S→S III U.S. 85 Czech 

Republic 
81 < .05 

    2003      
M01_12 4 Informal 

algebra 
V→S III U.S. 72 Netherlands 72 n.s. 

M03_11 4 Patterns N→N III Ontario 93 U.S. 91 n.s. 
M04_04 4 Patterns N→N III U.S. 83 Netherlands 83 n.s. 
M04_05 4 Informal 

algebra 
V→S III Hungary 84 U.S. 84 n.s. 

M01_12 8 Algebraic 
manipulation 

S→N III Hungary 69 U.S. 66 n.s. 
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M04_04 8 Algebraic 
reasoning 

VN→N I Hungary 49 U.S. 45 n.s. 

M09_05 8 Algebraic 
manipulation 

S→S III U.S. 26 Quebec 24 n.s. 

 

The items on which the relative performance of U.S. students tended to rank first or 

second range widely in difficulty, from less than 30 percent correct to more than 90 percent 

correct, but as a group the items tend to be rather easy.  They are mostly elementary items that 

reflect the transition from arithmetic thinking to algebraic thinking (involving algebraic 

manipulation, patterns, and informal algebra).  They do not involve pictorial or graphical 

representations.  The few items that are relatively rich in content (Quadrants I and II) involve 

functions or algebraic reasoning, and a couple of them call for numerical representations, which 

also places the items in the transition from arithmetic to algebra.  As we observed in the section 

on absolute performance, most items are located in Quadrant III of the content-process space, 

suggesting that they are mostly process constrained and content lean. 

Relative-Low-Performance Items 

1995 Items 

There were no fourth- or twelfth-grade items for which the U.S. students ranked last 

among the OECD countries in 1995 (Table 7), but there were eight released items given to eighth 

graders on which the U.S. students ranked last: Items I01, J18, L11, L13, P10, S01a, S01b, and 

T01a 

Item I01 is parallel to the eighth-grade Item M04_01 given in 2003.  The text of Item I01 

is as follows: 

Brad wanted to find three consecutive even numbers that add up to 81.  

He wrote the equation (n − 1) + n + (n + 1) = 81.  What does the n stand 

for? 
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There is a slight difference in wording between the two items, but the classification is the same. 

Item J18 gives a numerical table representing the relation between x and y, and asks for 

the missing value for x = 2.  The student has to find the relationship between the two variables, 

and it is not straightforward to establish the pattern (e.g., the student has to realize that there are 

missing numbers 3, 5, and 6 for which the relation must be true).  The kind of thinking that is 

needed to solve the problem requires instruction; the process is constrained, but the content is not 

lean. 

Item L11 gives a situation of a rubber ball that rebounds half the height each time, 

starting at 18m.  The student is asked to find the distance traveled when the ball hits the floor the 

third time.  Some modeling is required, but there is no need to use symbolic representations.  The 

problem can be solved through repeated addition by sketching the heights of the ball, or it can be 

solved by finding the sum of the numbers in the sequence 18, 9, 9, 4.5, and 4.5.  We classified it 

as an open-process problem with lean content (it uses knowledge acquired in previous grades). 

Item L13 is the patterns problem (circles and triangles) that we discussed above in the 

section on absolute performance (L4 at fourth grade).  Item P10 reads as follows: 

If m represents a positive number, which of these is equivalent to m + m+ 

m +m?  

The remaining three items were discussed in the section on absolute performance.  Not 

much eighth-grade content knowledge is needed for Item S01a; it can be solved using 

information learned in earlier grades.  Item S01b is process open with rich content, and Item 

T01a is also process open but the content is leaner. 
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1999 Items 

In 1999, there were five released items on which performance of the U.S. students ranked 

last out of seven countries: Items L12, P11, T01, V04a, and V04b.  Like all items in 1999, these 

were eighth-grade items. 

Item L12 resembles Item L11 (bouncing rubber ball) from 1995, discussed above, 

although it differs from that item in some important ways.  Item L12 describes the situation of an 

elevator that makes a series of starts and stops as it goes from one floor to another.  The student 

is asked to estimate how far the elevator has traveled given that the floors are 3m apart.  In this 

item, students have to create a representation of the situation that allows them to interpret 

correctly the distances that need to be added.  It is not a given pattern (as with the rubber ball), so 

the students have to keep track of where the elevator is.  The only operation involved is addition.  

The process is constrained (there are not many paths to the solution), and the problem demands 

basic arithmetic operations. 

Item P11 is similar to Item P9 from 1995.  It reads as follows: 

For all numbers k, k + k + k + k + k can be written as: 

A. k+5 

B. 5k 

C. k5 

D. 5(k +1) 

Item T01 is a constructed-response item that reads as follows: 

A club has 86 members, and there are 14 more girls than boys.  How 

many boys and how many girls are members of the club?  Show your 

work. 
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This item is similar to Item T01 in the 1995 eighth-grade assessment (dealing with kg of apples 

in two boxes).  Students may choose a numerical approach or a symbolic approach, and the 

TIMSS scoring rubric admits either. 

Item V04 gives the student four terms in a sequence of figures involving circles: 

 

Part (a) asks students to complete a table with the number of circles needed for the fourth figure 

and then to find the number of circles for the fifth figure.  Part (b) asks for the number of circles 

in the seventh figure.  The parts differ in cognitive demand.  Although Part (a) is essentially a 

counting task in which the process is constrained, Part (b) is a more open-process task, as 

students may choose either to extend the pattern (as in solving Part (a)) or, if they recognize 

triangular numbers, by using the formula for the nth triangular number (n(n + 1)/2), or by 

deriving it (if each figure is visualized as being doubled and arranged in a rectangle, then the 

number of circles in the figure can be seen as half of n × n circles plus half of n).  These 

strategies suggest that Part (b) can be more complex, although nothing precludes the students 

from doing the repeated addition.  In fact, the scoring rubric requires only a numerical answer 

and does not give credit for the analysis. 

2003 Items 

There were four items, all at eighth grade, on which the performance of U.S. students 

ranked last among the seven systems: Items M01_02, M02_05, M02_06, and M13_05. 
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Item M01_02 gives a picture portraying a scale that is balanced: 

 

The problem can be solved in at least two ways: numerically or by setting up an equation.  It 

requires the student to use knowledge about balanced scales. 

Item M02_05 is an item in which the student is given a picture of matchsticks in a 

sequence of designs that are increasing in length.  The student is given three figures in the 

sequence and asked for the number of matchsticks in the tenth figure.  Because the jump between 

the third and tenth figures is so great, the students need to derive a relationship to generate the 

number for the tenth figure.  To solve the item correctly, students need to notice that the number 

of matchsticks increases by 3 each time.  They also have to take into account that the pattern 

starts with 3 given matchsticks, so the expression (3 + 3k) gives the number of matches for the 

kth figure.  The process is constrained, and although the task could be solved by repeated 

addition, the student needs to keep track of the steps. 

Item M02_06 requires the student to reason through a situation described in words to 

determine the equation for the number of books that three students have: 
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The process is constrained, but it demands that the principles guiding the situation be 

coordinated to select the appropriate equation.  Some manipulation of symbols is required 

because the expression is given in reduced form. 

Item M13_05 is an unusual item.  It gives the student a picture of a grid containing a 

pattern of identical square tiles placed in different orientations so as to make a geometric design 

(see below).  The student is asked to find the orientation of a tile in a particular square on the 

grid if the pattern were to be continued.  The item requires the coordination of several elements, 

mostly spatial, to solve the item correctly, but the student also needs to be systematic and to keep 

track of where the tiles go.  There are at least two ways to approach the solution: by labeling the 

given squares and then repeating the pattern with the labels, or by completing the pattern, either 

physically or mentally.  Some instruction in pattern completion would appear to be necessary if 

the student is to solve the item correctly. 
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Table 9 provides summary data on the eight released relative-low-performance items in 

1995, the five in 1999, and the four in 2003.  For each item, we provide the item number and the 

grade at which it was administered.  We also provide our classification of the item content, the 

item representation, and the quadrant of the item’s cognitive demand.  Finally, we give the 
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percent correct for U.S. students and for students in the next lowest country, together with a test 

of the significance between the two percents. 

_________________________________________________________________ 

Insert Table 9 about here 

_________________________________________________________________ 

Table 9 

Summary Data on Released Relative Low-Performance Items for Each TIMSS Cycle 
Item Grade Content Represen-

tation 
Quad-
rant 

US 
%correct 

Next lowest Next 
%correct 

p 

    1995     
I01 8 Algebraic 

manipulation 
VS→V II 32 Canada 34 n.s. 

J18 8 Functions N→N II 39 Canada 44 n.s 
L11 8 Algebraic 

reasoning 
V→N IV 27 Netherlands 38 n.s. 

L13 8 Patterns P→P III 93 Hungary 93 n.s. 
P10 8 Algebraic 

manipulation 
S→S III 46 Netherlands 51 n.s. 

S01a 8 Patterns P→N III 75 Czech Republic 75 n.s. 
S01b 8 Patterns P→N I 25 New Zealand 31 < .05 
T01a 8 Equations V→N II 25 New Zealand 27 n.s. 

    1999     
L12 8 Algebraic 

reasoning 
V→N III 55 Netherlands 58 n.s. 

P11 8 Algebraic 
manipulation 

S→S II 46 New Zealand 54 < .01 

T01 8 Equations V→N I 29 New Zealand 32 n.s. 
V04a 8 Patterns P→N III 73 Hungary 77 < .05 
V04b 8 Patterns P→N III 64 New Zealand 64 n.s. 

    2003     
M01_02 8 Equations P→N II 74 Ontario 74 n.s. 
M02_05 8 Patterns P→S II 56 Netherlands 59 n.s. 
M02_06 8 Equations P→P I 26 New Zealand 28 n.s. 
M13_05 8 Patterns  V→S II 48 Australia 51 n.s. 

 

The items on which U.S. performance was relatively low ranged widely in difficulty, 

from 25 percent correct to 93 percent correct.  They tend to be somewhat difficult items in 

general.  Note that all the items on which U.S. performance was relatively low were given to 

eighth graders, a grade at which much tracking of mathematics classes, both official and 
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unofficial, is in place and at which the relative performance in mathematics of U.S. students has 

tended to be low in earlier international comparisons.  The items require a wide range of skills to 

be brought to bear on the tasks, and students in the United States perform like students in other 

low-performing countries.  The items tend to involve basic skills in arithmetic or algebra. 

Items that deal with patterns are prominently represented in Table 9.  In every case, the 

pattern may be continued for a few steps, but a solution to the problem requires some 

generalization beyond what can be reasonably accomplished by counting or repeated addition.  

This challenge seems to be a weakness for U.S. students.  Interestingly, however, in most cases, 

students in the other countries tended to perform at about the same level. 

Items in Quadrant II are also common in Table 9.  Such items may have a constrained 

process, but they require relatively high levels of content for their solution, and one might have 

predicted low performance by U.S. eighth graders.  Items in Quadrant III (lean in content and 

process constrained) are also prominently represented, which is an interesting result.  Students in 

most of the countries tended to do relatively well on those items (except for Items P10 and L12).  

Items in Quadrants I and IV, which require more open processes, tended to be more difficult too 

(performance between 25 and 50 percent).  In only one case, however, is the performance of the 

U.S. students significantly below that of the other countries in the group, which may suggest that 

these items are consistently difficult for all students.  The observed differences appear to be 

attributable to different curricular intentions and implementations. 

Summary Observations About U.S. Algebra Performance 

The general level of performance of U.S. fourth graders is not bad on items that ask for 

rather straightforward calculations or reasoning.  They do relatively well in interpreting a rule, 

engaging in transitive reasoning, translating from words to symbols, and extending numerical 
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patterns.  U.S. twelfth graders do rather well in interpreting the graph of a function, but relative 

to twelfth graders in other countries, their performance is weak. 

The most and greatest differences between performance in the United States and in other 

countries come at eighth grade.  U.S. eighth graders demonstrate relatively good understanding 

of the notation for exponents, ability to interpret simple algebraic expressions, reasoning about 

sequences, and solving an equation for one variable in terms of another.  In contrast, their 

performance is relatively weak in interpreting symbols in an equation, completing a table 

showing a relation between variables, finding the sum of series expressed by verbal rules, 

identifying a pattern, manipulating a simple algebraic expression, extending sequences of 

geometric figures to find the pattern, solving word problems involving relations between 

quantities, translating from words into algebraic symbols, and completing a geometric pattern. 

To some degree, our results extend and complement those of a study comparing the 

performance of U.S. students with that of an average taken across 12 countries participating in 

TIMSS 2003 and PISA 2003.28  When items from TIMSS were classified as low rigor versus 

high rigor and from both TIMSS and PISA as low difficulty versus high difficulty, U.S. 

performance was below the 12-country average at both levels of rigor and at both levels of 

difficulty.  Our results indicate, however, that although U.S. students’ performance may be low 

in general, it is not uniformly low. 

Conclusion 

Given that U.S. students’ performance in algebra is about at their average across 

mathematics topics, we chose to examine the extremes of the distribution of item difficulty to see 

what U.S. students manage quite well, what they need help with, and how their performance 

                                                 

28 Ginsburg and others (2005). 
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compares with that of students in other systems.  U.S. eighth graders are reasonably competent 

with problems that involve algebraic manipulation and the transition from arithmetic to algebra 

(which might be considered good news, given that most U.S. students do not take algebra until 

they reach ninth grade).  But U.S. students do not do well on items that involve the extension of a 

pattern if the item requires that they explicitly produce a relationship rather than simply find the 

next few terms in a sequence. 

U.S. eighth graders have teachers who claim—far more than teachers in other countries—

that in more than half of their lessons, they relate the mathematics to daily life.29  Their students, 

however, do relatively poorly in setting up an equation to model a real situation.  Compared with 

eighth-grade teachers in some other countries, U.S. teachers tend not to use many high-

complexity problems in their lessons,30 which may help account for some of the difficulties that 

U.S. students have.  Beyond tracking, another source of poor performance in algebra may be that 

U.S. eighth-grade teachers spend considerable time reviewing topics already taught; almost 30 

percent of their lessons are devoted entirely to review.31

In short, if they are to improve their performance in algebra, U.S. students appear to need 

many more opportunities to engage in functional thinking with complex problems and in 

particular, in functional thinking as it relates to realistic situations.  They will live not in a post-

industrial society but rather in a knowledge society32 that will demand a different set of skills 

than mathematics courses have traditionally supplied.  These students need to be able to use the 

algebra that they study to solve problems they will face professionally and personally. 

                                                 

29 Ginsburg and others (2005, p. 23). 
30 Hiebert and others (2003, p. 6). 
31 Hiebert and others (2003, p. 5). 
32 Hargreaves (2003). 
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Algebra is of limited use if it is understood as generalized arithmetic only.  If students are 

to use algebra, they need to be proficient in functional thinking.  The algebra they study in school 

should enable them not simply to manipulate expressions and solve equations but also to 

formulate problems using algebraic notation, fit functions to data, manipulate those functions to 

understand phenomena, visualize functional relations, and interpret properties of functions.  The 

United States is not the only country in which eighth-grade teachers could be giving greater 

attention to functions,33 but it is one in which too many people have assumed for too long that 

most students cannot learn, use, or value algebra. 
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