
Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

FINAL REPORT

Lillian Tyack, Dr. Lale Khorramdel, Dr. Matthias von Davier

Table of Contents

I. Introduction ... 1

II. Code Optimization .. 2

III. Open Source and Public Domain Tools Used .. 2

Image Pre-Processing Packages ... 2

ANN Modeling Packages ... 3

ANN Performance Packages .. 3

IV. List of TIMSS 2023 Items for ANN Modeling .. 4

Graphing Tool Items .. 4

Drawing Tool Items ... 4

V. CNN Modeling in the TIMSS 2023 Field Test .. 5

VI. Journal Article ... 6

VII. Conference Proposals ... 7

Conference submission 2: NCME 2023 ... 7

Conference submission 3: IEA International Research Conference 2023 7

References ... 9

Appendix ... 10

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

1

I. Introduction

This report is the fourth and final deliverable of the IEA-funded research project “Using Neural

Network Classification for the Automated Scoring of Image Responses in TIMSS 2023”. In this

report, we describe the code optimization process, open source and public domain tools used in

neural network modeling and identify TIMSS 2023 items that can be scored with artificial neural

networks (Activity 3, from July 1st to October 31st, 2022). Moreover, a list of conference proposals

and journal articles related to the work completed during this project is provided (Activity 4, from

June 1st to October 31st 2022). Finally, an example workflow is provided in the appendix to

illustrate the R code used for modeling.

The genesis of this research project dates back to a pilot study conducted in 2020 at the TIMSS &

PIRLS International Study Center to see whether artificial intelligence could be used to validate

human scoring of graphical responses. At the time, artificial neural networks (ANNs) were applied

to one released item from the TIMSS 2019 Problem Solving and Inquiry (PSI) “Building” task.

This trichotomous item asked students to draw the back wall and sides of a shed on a grid according

to given specifications. It was found that the ANN validation technique achieved up to 97.53%

agreement with the human raters and the AI models correctly classified 193 responses that were

incorrectly classified by human raters, indicating that ANNs can help identify mistakes and

inconsistencies in human scoring as well.

This IEA-funded research project aimed to extend the ANN validation technique to eight

additional TIMSS 2019 graphical response items to see how the neural networks would perform

across a variety of different tasks and possible response outcomes (Activity 2, from January 1st to

June 30th 2022) and to implement the procedure operationally in TIMSS 2023 (Activity 3). It was

found that the ANN technique was extremely successful when applied to the non-PSI items, with

the most accurate models classifying over 99% of the image responses into the appropriate scoring

category for dichotomous items, and almost 98% for one trichotomous item. Additionally, the

models correctly classified a number of image responses that had been incorrectly scored by human

raters, with most of the items having a higher number of incorrectly human-scored responses than

responses misclassified by the ANNs.

These results indicate that automated scoring using ANNs is comparable to, and in many cases

more accurate, than human raters, and that the validation technique could be used in TIMSS (and

other large-scale assessments) as a low-cost and fast way to double-score all graphical response

items. The method is also promising for identifying inconsistently scored responses that could be

set aside for expert scoring from the mathematics coordinator. In sum, this validation technique

will improve the accuracy and consistency of graphical response item scoring in future TIMSS

cycles.

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

2

II. Code Optimization

During Activity 3, the ANN modeling scripts were revised to be legible to those unfamiliar with

the project and to run smoother. The optimization process was guided by Robert C. Martin’s

“Clean Code: A Handbook of Agile Software Craftsmanship” (2008), with the following steps

taken:

● Revision of variable names to be meaningful to unfamiliar readers (e.g., changing the

name of a data frame from “df” to reflect what is in the data frame, such as

“accuracy_results” or “training_data_information”).

● Add comments so that readers can follow the structure of the script and understand what

each chunk of code is enacting.

● Remove redundant or old functions that were no longer of use.

● Split larger functions into smaller functions that accomplish only one or two tasks.

Instead of one large script that covers the pre-processing, modeling, and results processes, each

stage of modeling has a unique script:

● The pre-processing script converts image html files to PNG files, pre-processes them (e.g.,

convert to greyscale, increase saturation, etc.), assigns the responses to training and testing

samples, and composes the image response arrays.

● The modeling script composes and trains ANNs based on a number of parameters provided

by the user.

● The modeling performance script applies the trained models to the validation samples and

saves the results, including model accuracy, loss, and F1 scores. It also can save image

responses where there was a disagreement between the machine score and human rater

score for further review.

The optimized scripts are ready to be used for TIMSS 2023 data collection and will likely require

minimal adaptation only.

III. Open Source and Public Domain Tools Used

Multiple free R packages (R Core Team, 2022) formed the basis of the ANN modeling process

and were integral to the success of the project. The packages contributed to multiple stages of the

modeling process, including pre-processing, modeling, and producing performance statistics.

Image Pre-Processing Packages

webshot: This package was used to take screenshots of the html image response files. During the

modeling of the Building PSI item performed prior to this grant project, html files were converted

to PDFs manually in Adobe and then converted to PNG files. However, webshot was utilized for

this project because it is a fast, automated way of performing batch conversions.

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

3

magick: This package was used for image modification. As explained in the second quarterly

report, the images had to undergo manipulation so that their features could be better detected by

the machine learning algorithms. The magick package has multiple functions for modification,

including “image_crop()” and “image_chop()” to crop the image responses, “image_channel()” to

convert the images to greyscale, “image_contrast()” to sharpen the images, “image_modulate()”

to increase saturation of the blacks and whites, “image_convolve()” to add blurring to an image,

and finally “image_scale()” to pixelate the image.

EBImage: This package was used to resize image responses prior to placement in the keras arrays. The

“as_EBImage()” function from the magick package was used to convert magick objects to EBImage objects,

then the “resize()” function was used to shrink the images to a given pixel height and width (typically 64x64

or 75x75 pixels).

ggplot2: This package was used to plot image responses from keras arrays to visualize approximately how

they would appear to the CNN models during training.

ANN Modeling Packages

tensorflow: This package was used as the basis for all ANN modeling. It is an open-source package for

machine learning, in particular deep learning.

keras: This package is the user interface to tensorflow (it operates on top of tensorflow), which provides

all of the functions for composing and training the ANN models. The “array_reshape()” function reshapes

a list of EBImage objects into an array that can be used for training or validating ANN models. The

“keras_model_seqential()” function was used to build the CNN models, while the “fit()” function was

used to train the models. The “evaluate()” function was used to produce model loss and accuracy on

validation data.

ANN Performance Packages

openxlsx: This package was used to create excel workbooks with multiple tabs using the

“createWorkbook(),” “addWorksheet()”, “writeData(),” and “saveWorkbook()” functions.

yardstick: This package was used to compute F1 scores to evaluate model performance, using the

“recall_vec()” function and the “precision_vec()” function to produce recall and precision estimates.

caret: This package was used to compute kappa and IOCC (improvement over chance criterion) statistics

to evaluate model performance, using the “confusionMatrix()” function.

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

4

IV. List of TIMSS 2023 Items for ANN Modeling

Graphing Tool Items

In TIMSS 2023, items that use the “graphing tool” will be machine scored using rule-based scoring

in python with response coordinate strings that are saved in the raw student data. These items

include all of the secured trend items in this grant project, which were required to be human scored

in TIMSS 2019 because the response coordinates were not saved for machine scoring. These items

are eligible to be validated by ANNs using screenshots of student responses to both refine the

python scripts and rescore any “borderline” responses that may appear. “Borderline” responses are

those where students have the correct answer present, but additional lines (e.g., stray marks,

guiding lines, etc.) make the students’ understanding of the item unclear. We have found that the

ANNs tend to give “borderline” responses credit while the rule-based machine scoring does not.

Thus, there will be disagreements in classifications between the two methods, bringing these

“borderline” responses to our teams’ attention. We will then be able to manually reclassify them

with input from the mathematics coordinator for especially tough cases. This approach aids in

maintaining the trend scoring for the items by using the ANNs as an emulator of human scoring

while being faster, cheaper, less labor-intensive and potentially more accurate.

The 10 “graphing tool” items, scored using python code and validated with ANNs, will be:

Grade 4

● ME61081A: Trend math item in the Geometry content area worth one point

● ME61081B: Trend math item in the Geometry content area worth one point

● ME61224: Trend math item in the Geometry content area worth one point

● ME71177: Trend math item in the Geometry content area worth one point

● ME71181: Trend math item in the Measurement content area worth one point

● ME71211: Trend math item in the Geometry content area worth one point

● ME81032: New math item in the Geometry content area worth one point

● ME81902: New math item in the Measurement content area worth one point

Grade 8

● ME72119: Trend math item in the Geometry and Measurement content area worth one point

● ME72181: Trend math item in the Geometry and Measurement content area worth one point

Drawing Tool Items

In TIMSS 2023, items that utilize the drawing tool are also eligible to be scored by the ANNs.

Three new science items use the drawing tool function and can only be scored based upon image

responses. The primary scoring method for these items will be human scoring, with the ANN

approach used for validation. One item will have neural networks trained on all available image

responses from the TIMSS 2023 field test. The two remaining items have been changed since the

field test, and thus the field test responses would not be useful for training. A subset of responses

from the data collection sample will be used for training instead. In total, one item is available at

Grade 4 and two are available at Grade 8:

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

5

Grade 4

● SQ81R03: New science item in the Earth in the Solar System content area worth one point

with 10,450 image responses available for training.

Grade 8

● SQ82T02B: New science item in the Earth in the Solar System and Universe content area

worth one point.

● SQ82T04A: New science item in the Earth in the Solar System and Universe content area

worth one point.

It should be noted that these two of these items were modeled using convolutional neural networks

in the TIMSS 2023 field test. More information is provided in the following section.

V. CNN Modeling in the TIMSS 2023 Field Test

All drawing tool items were unable to be scored by human raters for the TIMSS 2023 field test

due to technical difficulties involving the bulk export of image responses on the online player

system platform. To produce some estimate of difficulty for the “Earth’s Motions” PSI task at each

grade, convolutional neural networks (CNNs) were used to score a random sample of 1,000

responses for four drawing tool items. The scoring procedure followed the same general steps that

were used to model the TIMSS 2019 items: the images underwent some pre-processing to make

their features more detectable to the neural networks, the models were trained on a subset of

responses and applied to remaining responses, and a subset of response classifications were

manually reviewed.

Because these items could not be scored by human raters hired by the countries, a random sample

of 200 to 250 responses were human scored by a member of the research team at the TIMSS and

PIRLS International study Center for the CNN training sample. Prior to placement in the training

arrays, the responses were augmented to artificially increase the training sample size.

Augmentation included copying, mirroring, and/or rotating the image responses 180 degrees. This

process succeeded in doubling or even tripling the training sample size. Following augmentation,

CNNs with two convolutional layers were constructed and underwent 100 epochs of training.

Afterwards, the trained CNNs were applied to the remaining image responses and their scored

classifications were saved.

For verification, some responses had to be reviewed by a human rater (again, a member of the

research team at the TIMSS and PIRLS International Study Center). Any responses scored as

incorrect by the CNN were reviewed if the probability of the item being incorrect was less than

90% for SQ82T05 and less than 100% for SQ81R03, SQ81R04B, and SQ81T02B.

The following table displays the percent correct and percent code 7 statistics (where applicable).

Additionally, the table includes the model accuracy, which is estimated from the percent of

responses in the validation sample where the CNN score did not have to be changed after the

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

6

manual review (in other words, the percent of responses where the CNN score matched the human

rater score for the subset of reviewed responses).

Table 1. Item Review Statistics and Model Accuracy for Select T23 FT Earth’s Motions Items

Item Percentage

Correct

Percentage

Code 7

CNN Model

Accuracy

SQ81R03 16.40% 95.25%

SQ81R04B* 5.30% 9.40% 90.13%

SQ82T02B 13.21% 15.62% 83.98%

SQ82T05* 9.82% 96.62%
*Note: Indicates item removed from the PSI task after item review

VI. Journal Article

One journal article will be written related to the work completed during this research grant project:

Using Convolutional Neural Networks to Automatically Score Eight TIMSS 2019 Graphical

Response Items

Abstract:

Large-scale assessments have used graphical response-based items to measure student ability for

decades, but they have yet to implement automated scoring of these responses and instead rely on

human scoring alone. To investigate how scores provided by machine learning algorithms compare

to those provided by human raters, we applied convolutional neural networks (CNNs) to classify

image-based responses from eight TIMSS 2019 items. Our results show that the most accurate

CNN models classified over 99% of the image responses into the appropriate scoring category for

dichotomous items, and almost 98% for one trichotomous item. Additionally, during the modeling

process the CNNs correctly classified a number of image responses that had been incorrectly

scored by human raters. For most items, the number of incorrectly human-scored responses was

higher than the average number of responses misclassified by the most accurate models. These

results suggest that automated scoring using CNNs is comparable to, and in many cases more

accurate, than human raters. This paper argues that the machine learning procedure explored could

be implemented in international large-scale assessments (ILSAs) as a verification method to

improve the accuracy and consistency of graphical response item scores. In lieu of additional

human raters, ILSAs could implement CNN-based automated scoring to provide a second set of

scores, thus reducing the workload and costs associated with human scoring.

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

7

VII. Conference Proposals

Two conference proposals have been submitted related to the work conducted prior to this grant

concerning the “Building” PSI item, as well as modeling on select TIMSS 2019 items conducted

under this grant:

Conference submission 2: NCME 2023

Automated Scoring of TIMSS 2019 Graphical Responses using Convolutional Neural Networks

Abstract:

The transition of TIMSS to a digital format in 2019 allowed for the inclusion of more innovative

item types, including items that ask students to respond using free drawings or graphing tools. Due

to the complexity of student responses, these items require human scoring. While human scorers

have been the standard for scoring constructed response items in international large-scale

assessments (ILSAs), rater effects such as fatigue and leniency can lead to inconsistencies and

errors in their scoring. This study measured the potential for machine scoring of graphical response

items as a validation method using convolutional neural networks (CNNs) applied to eight TIMSS

2019 items. After image manipulation (e.g., increased contrast, cropping, etc.), CNNs were trained

on a subset (20-30%) of student image responses using scores from the human raters, then applied

to the remaining image responses unseen by the models. Their classifications were compared to

the human ratings, and discrepancies in scores were assessed by an independent human rater. The

models were extremely accurate, reaching over 99% accuracy for dichotomous items and 97%

accuracy for one trichotomous item across five cross-validation samples. These results indicate

that neural networks can be used to validate human scores in ILSAs for image-based responses.

Additionally, during the process some responses were identified as being incorrectly scored by the

human rater, further evidencing the benefit of using machine learning to improve measurement

accuracy.

Conference submission 3: IEA International Research Conference 2023

Using Convolutional Neural Networks to Automatically Score TIMSS 2019 Graphical Response

Items

Abstract:

TIMSS 2019 took advantage of its new digital format to include more interactive item types,

including items that ask students to respond using graphing tools to produce image responses to

assess skills in the Geometry content domain. While traditionally, these items have required human

scoring in international large-scale assessments (ILSAs) due to the complex nature of student

responses, scores can be influenced by rater effects like fatigue and leniency. Two consequences

of rater effects are incorrect scoring and inconsistent scoring, which can impact the validity and

reliability of the items. Supported by the IEA Research and Development fund, this study

examined the possibility of scoring graphical response items using convolutional neural networks

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

8

(CNNs) as a validation method. To evaluate the efficacy of CNNs, eight TIMSS 2019 items were

modeled and a second set of machine scores was produced for comparison against human scores.

Prior to modeling, image responses were manipulated (increased contrast, conversion to greyscale,

and pixelated), to improve feature detection by the neural networks. The CNNs were then trained

on a subset (20-30%) of student image responses using scores from the human raters and applied

to the remaining image responses unseen by the models.

The models produced were extremely accurate, reaching over 99% accuracy for dichotomous

items and nearly 98% accuracy for one trichotomous item (having an additional score category of

partial credit) across five cross-validation samples. Discrepancies between CNN classifications

and human ratings were assessed by an independent human rater. It was found that several

responses were incorrectly scored by the human raters, with more image responses incorrectly

scored for the trichotomous item and items with more possible correct response options. After an

independent rater review, the average number of misclassified responses for the final models

ranged from 11 to 99 for the dichotomous items and 233 for the trichotomous item. By comparison,

the average number of incorrectly human-scored responses that were identified ranged from 23 to

601 for the dichotomous items and 227 for the trichotomous item. These results demonstrate that

CNNs can perform as well as, and sometimes even better than, human raters because most items

had more incorrectly human-scored responses than incorrectly machine-scored responses. The

method is cost-effective and time-efficient, requiring only a single independent rater to review a

fraction of the image responses to produce a second set of scores. In sum, machine learning with

convolutional neural networks is highly accurate. It can be used to validate human scores in ILSAs

for image-based responses, thus improving measurement accuracy and reliability.

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

9

References

Allaire, J. J., & Chollet, F. (2021). keras: R interface to ‘‘Keras’’ (R Package Version 2.4.0).

 https://CRAN.R-project.org/package=keras

von Davier, M., Tyack, L., & Khorramdel, L. (2022). Scoring Graphical Responses in TIMSS

 2019 Using Artificial Neural Networks. Educational and Psychological

 Measurement. https://doi.org/10.1177/00131644221098021

Kuhn, M. (2021). caret: Classification and Regression Training. (R Package Version 6.0-90).

 https://CRAN.R-project.org/package=caret

Kuhn, M., & Vaughan, D. (2021). yardstick: Tidy Characterizations of Model Performance. (R

 Package Version 0.0.9). https://CRAN.R-project.org/package=yardstick

Ole, A. (2022). EBImage: An R package for image processing with applications to cellular

 phenotypes (R Package Version 4.34.0). https://github.com/aoles/EBImage

Ooms, J. (2021). magick: Advanced graphics and image-processing in R (R Package Version

 2.7.2). https://CRAN.R-project.org/package=magick

R Core Team (2022). R: A Language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. https://www.R-project.org/

Schauberger, P., & Walker, A. (2021). openxlsx: Read, Write and Edit xlsx Files. (R

 Package Version 4.2.4). https://CRAN.R-project.org/package=openxlsx

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. (R Package Version 3.3.5).

 https://ggplot2.tidyverse.org

https://cran.r-project.org/package=keras
https://doi.org/10.1177/00131644221098021
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=yardstick
https://github.com/aoles/EBImage
https://cran.r-project.org/package=magick
https://www.r-project.org/
https://cran.r-project.org/package=openxlsx
https://ggplot2.tidyverse.org/

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

10

Appendix

Table of Contents

Introduction and Example Item Information ... 10

Stage 1: Pre-Processing ... 11

Stage 2: Modeling .. 17

Stage 3: Evaluating Model Performance ... 18

Introduction and Example Item Information

The following document describes the general workflow for modeling with a TIMSS 2019 image

response-based item. The example item included is ME52048 which is a dichotomous released

item that measures Geometry knowledge at Grade 8. This item asks students to draw four lines

of symmetry on a given figure. Students receive credit if they draw four lines of symmetry on the

diagram with no other lines drawn. Below is the storyboard of the item:

Note: To access, reuse, reproduce, or translate IEA materials you will need to complete a

Permission Request Form. Please reach out to permission.requests@iea.nl for more information.

mailto:permission.requests@iea.nl

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

11

Below is an example of a correct response:

Stage 1: Pre-Processing

The following are the steps taken during the pre-processing stage:

1. Assign responses to training and validation samples based upon a set sample split. For

example, we may select 30% of responses to be in the training sample and the remaining

70% of responses to be in the validation sample.

a. An example function could be: make_assignment_file(), which would do the

following:

i. Read in data that have student IDs, the name of the images that correspond to

their responses, and their human scores

ii. Loop through each country, within each country and score category assign

30% of responses to the training sample (we call “train” in our code) and 70%

to the validation sample (we call “test” in our code)

iii. Save CSV files of the country assignments (if desired)

iv. Save RDS file for all of the country data together

Script note: In our modeling script, we also have a function for creating additional sample

assignments for cross-validation samples. Our function makes the process run faster, but any

user can just repeat this example function additional times with separate modeling folders.

sample_split<-0.3 #Proportion of responses to be assigned to training sample
data<-read.xlsx(paste0(data_dir, "ME52048 example score file.xlsx"))
country_list<-unique(data$CNTRYCODE)
make_assignment_file<-function(){
 data$sample_assignment<-NA

 set.seed(1234)

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

12

 for (country in country_list){
 country_data<-data %>% filter (CNTRYCODE==country)
 for(score in c(0,1)){
 num_score<-length(country_data$score[country_data$score==score])
 assignment<-sample(c("train", "test"),
 size = num_score,
 replace = TRUE,
 prob = c(sample_split, 1-sample_split))
 country_data$sample_assignment[country_data$score==score]<-assignment
 }
 file_name<-paste0(save_dir, "CSVs/", country, " sample assignment.csv")
 write.csv(country_data, file=file_name, row.names=F)

 data$sample_assignment[data$CNTRYCODE==country]<-
country_data$sample_assignment
 }
 saveRDS(data, paste0(save_dir, "List of image responses with
assignment.rds"))
}
make_assignment_file()

2. Next, we make the data arrays for modeling, which involves reading in the image responses,

modifying them to enhance feature detection, and placing them in a keras array. We have

found that it saves time to create one array that includes all data, and then reshape that array

into separate training and validation arrays. This is especially useful when testing different

training sample sizes and going through multiple iterations of modeling. Three example

functions could be used:

a. The modify_image_responses() function, which would do the following:

i. Crop the image responses

ii. Convert image responses to greyscale

iii. Increase saturation and contrast of images

iv. Pixelate the images

Script note: In our modeling script, we have to move the image responses from one location one

the server to another location, so in the process we apply all modifications except for pixelation.

Thus, images receive pixelation only when they are placed in the array.

chop_dims<-"11x47"
crop_dims<-"383x383"
pixel_width = 75
pixel_height = pixel_width

modify_image_responses<-function(image_list){
 #Crop images
 image_list<-lapply(image_list, image_chop, chop_dims)
 image_list<-lapply(image_list, image_crop, crop_dims)

 #Convert to greyscale

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

13

 image_list<-lapply(image_list, image_channel, channel = "C")

 #Increase contrast
 image_list<-lapply(image_list, image_modulate, saturation=200)
 image_list<-lapply(image_list, image_contrast, sharpen=1)

 #Add pixelation
 image_list<-lapply(image_list, image_scale, paste0("x", pixel_height))
 image_list<-lapply(image_list, image_scale, "x500")

 return(image_list)
}

b. The create_all_data_array(), which would do the following:

i. Read in the data assignment file

ii. Read in the image responses

iii. Call the modify_image_responses() function to manipulate responses

iv. Resize the image responses and arrange into an array

v. Return the array of images and their corresponding labels (human rater scores)

Script note: In our modeling script, we actually loop the formation of the arrays. We’ve found

that when dealing with thousands of image responses, it is faster to read in 500 to 1,000 at a time,

reshape them and place them in small arrays. Once the small arrays are created they are then

bound together into one larger array.

create_all_data_array<-function(){
 data<-readRDS(paste0(save_dir, "List of image responses with
assignment.rds"))
 pics<-list()
 image_files<-paste0(image_dir, data$CNTRYCODE, "/", data$image_name,
".png")
 #image_files<-image_files[1:25]
 for (i in 1:length(image_files)){
 pics[[i]]<-image_read(image_files[i])
 }

 pics<-modify_image_responses(pics)

 #Convert to EBImage object, resize, and convert to keras array
 pics<-lapply(pics, as_EBImage)
 pics<-lapply(pics, resize, w=pixel_width, h=pixel_height)
 pics<-lapply(pics, array_reshape, c(pixel_width, pixel_height, 1))
 images<-rlist::list.rbind(pics)
 images<-array_reshape(images, c(nrow(images), pixel_width, pixel_height,
1))
 return(list(images=images, labels=data$score))
}
arrays<-create_all_data_array()
images=arrays$images

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

14

labels=arrays$labels
save(images, labels, file=paste0(save_dir, "all data arrays.RData"))

c. The create_sample_array() function, which could take the argument “sample_type”,

which would indicate which sample array would be created, either the training or the

validation sample. This function would do the following:

i. Load the arrays for all of the data

ii. Randomize the data and reduce it to just the sample type

iii. Go through each response in the data, taking the image response object from

the full data array and placing it into a new sample array

Script note: In our modeling script, we again create smaller arrays to merge into a larger array to

quicken the process. Additionally, there is an option to create the cross-validation sample arrays

automatically, but a user could just run this example function multiple times instead.

data<-readRDS(paste0(save_dir, "List of image responses with
assignment.rds"))
data$id_num<-row.names(data)

make_sample_arrays<-function(sample_type){
 sample_data<-data%>%filter(data$sample_assignment==sample_type)
 set.seed(1234)
 sample_data<-sample_data[sample(nrow(sample_data), nrow(sample_data)),]
 all_data_array_nums<-sample_data$id_num
 all_data_array_nums<-as.numeric(all_data_array_nums)

 for (i in 1:length(all_data_array_nums)){
 if (i==1){
 ims<-images[all_data_array_nums[i], 1:pixel_height, 1:pixel_width, 1]
 } else if (i==2) {
 ims<-abind::abind(ims, images[all_data_array_nums[i], 1:pixel_height,
1:pixel_width, 1], along=0)
 } else {
 ims<-abind::abind(ims, images[all_data_array_nums[i], 1:pixel_height,
1:pixel_width, 1], along=1)
 }
 }
 sample_images<-array_reshape(ims, c(nrow(ims), pixel_width, pixel_height,
1))
 return(list(images=sample_images, labels=sample_data$score))
}

#Create training sample arrays
arrays<-make_sample_arrays(sample_type="train")
train_images<-arrays$images
trainLabels<-arrays$labels
save(train_images, trainLabels,
 file=paste0(save_dir, "train data arrays.RData"))

#Create validation sample arrays

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

15

arrays<-make_sample_arrays(sample_type="test")
test_images<-arrays$images
testLabels<-arrays$labels
save(test_images, testLabels,
 file=paste0(save_dir, "test data arrays.RData"))

3. Finally, we can plot the image responses in the arrays to get a rough estimate of how the

neural networks will “view” them:

a. We can plot just one image

image <- as.data.frame(images[1, , ,])
colnames(image) <- seq_len(ncol(image))
image$y <- seq_len(nrow(image))
image <- gather(image, "x", "value", -y)
image$x <- as.integer(image$x)

ggplot(image, aes(x = x, y = y, fill = value)) +
 geom_tile() +
 scale_fill_gradient(high = "white", low = "black", na.value = NA) +
 scale_y_reverse() +
 theme_minimal() +
 theme(panel.grid = element_blank()) +
 theme(aspect.ratio = 1) +
 xlab("") +
 ylab("")

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

16

b. Or we can plot multiple images at a time

par(mfcol=c(3,3))
par(mar=c(0, 0, 1.5, 0), xaxs='i', yaxs='i')
for (i in 1:9) {
 img <- images[i, , ,]
 img <- t(apply(img, 2, rev))
 image(1:pixel_width, 1:pixel_height, img, col = gray((0:255)/255), xaxt =
'n', yaxt = 'n',
 main = paste(class_names[grepl(labels[i], class_names)]))
}

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

17

Stage 2: Modeling

During the modeling process, the training samples are loaded and models are constructed and

trained on the training sample array. Any user can create a model, with the most basic

convolutional neural network having one convolutional layer and two dense layers. A basic

model, for example, would be the following:

model<-keras_model_sequential()

model %>%
 layer_conv_2d(filters=32, kernel_size=c(3,3), activation='relu',
input_shape=
 c(pixel_width, pixel_height,1)) %>%
 layer_max_pooling_2d(pool_size=c(2,2)) %>%
 layer_flatten()%>%
 layer_dense(units = 128, activation = 'relu') %>%
 layer_dense(units=3, activation='softmax')

model %>% compile(
 optimizer = 'nadam',
 loss = 'sparse_categorical_crossentropy',
 metrics = c('accuracy')
)
model %>% fit (train_images, trainLabels, epochs=25, verbose=FALSE,
view_metrics=TRUE)

To enable us to run multiple models quickly, we wrote a function named run_CNN_models(),

which constructs and trains one or more CNN models according to user specifications, including:

● The number of dense (fully-connected) layers desired, can either be a number (e.g., “2”)

or a vector (e.g., “c(2, 3)”), which would run multiple models, (one with two dense

layers, and one with three dense layers). The default is 2.

● The unit of the first dense layer, default is 128.

● The number of units by which subsequent dense layers should increase, default is 64.

● The number of convolutional layers desired. Like with the argument for the dense layers,

the user can specify either a single number or a vector.

● The number of filters of the first convolutional layer, the default is 32.

● The number of filters by which subsequent convolutional layers should increase, default

is 32.

● Max pooling size, default is 2x2

● Padding used, can be either “zero”, “no”, or “both,” which produces models with zero

padding and no padding, default is “both”.

● Whether dropout layers should be included, default is FALSE.

● The dropout rate of the dropout layers, default is 0.25.

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

18

● Whether the training plot should be shown, the default is FALSE.

Say we want to run four convolutional models total, two with one convolutional layer and two

with two convolutional layers, both testing zero and no padding. We would set up the function as

follows:

source(paste0(root_dir, "CNN Modeling Example_Modeling Functions.R"))
opt<-"nadam"
epochs<-25
CNNs<-run_CNN_models(dense_layers=2,
 dense_base_unit=128,
 dense_unit_increase=64,
 convolutional_layers=c(1,2),
 c_filters=32,
 c_filters_increase=32,
 pool_size=c(2,2),
 padding="both",
 with_dropout=FALSE,
 dropout_rate=0.25,
 view_plot=FALSE)

When the function is run, the models are returned as a list (along with names to save the models

under and the time it took to run the models). The models can then be saved to a folder so they

can be used again in the future:

models<-CNNs$models
model_names<-CNNs$model_names

for (i in 1:length(models)){
 filename<- paste0(save_dir, opt," ", model_names[i]," (", epochs, "
epochs)", ".hdf5")
 save_model_hdf5(models[[i]], filename, overwrite = TRUE, include_optimizer
= T)
}

Stage 3: Evaluating Model Performance

Modeling performance can be evaluated in a number of ways: overall accuracy, model loss (how

well the model fits the data), precision, recall, F1-scores, improvement over chance criterion, etc.

In our modeling scripts, we produce all of these statistics in addition to classification accuracy by

country and classification accuracy for incorrectly human-scored responses. For simplicity, our

example will just cover the basic model performance statistics.

1. First, we can produce the basic model performance metrics:

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

19

a. Begin with accuracy and loss using the keras evaluate() function:

model<-models[[1]]
classify_test_samp<-model %>% evaluate(test_images, testLabels)
loss<-classify_test_samp[1]
accuracy<-classify_test_samp[2]

b. Next, compute the precision, recall, and F1-Scores using the yardstick package:

compute_precision_recall_f1<-function(model){
 predicted_probs <- model %>% predict(test_images, verbose=0)
 class_pred <- as.array(k_argmax(predicted_probs, axis=-1))
 rater_scores<-as.factor(testLabels)
 classifications<-as.factor(class_pred)
 levels(classifications)<-c("0", "1")

 recall<-yardstick::recall_vec(truth=rater_scores,
estimate=classifications)
 precision<-yardstick::precision_vec(truth=rater_scores,
estimate=classifications)
 f1_score<-(2*precision*recall)/(precision+recall)

 return(list(recall=recall, precision=precision, f1=f1_score))
}

prf1<-compute_precision_recall_f1(model)
recall<-prf1$recall
precision<-prf1$precision
f1_score<-prf1$f1

c. Compute the improvement over chance criterion (IOCC— how much better a model

classified the responses in the validation sample than if the classification had been

done by chance) using the caret package:

compute_IOCC<-function(model){
 predicted_probs <- model %>% predict(test_images, verbose=0)
 class_pred <- as.array(k_argmax(predicted_probs, axis=-1))
 rater_scores<-as.factor(testLabels)
 classifications<-as.factor(class_pred)
 levels(classifications)<-c("0", "1")

 cm<-caret::confusionMatrix(data=classifications,
reference=rater_scores)
 Ho<-length(classifications[classifications==rater_scores])
 N<-length(testLabels)
 t<-table(testLabels)
 if (n_score_categories==3){
 He<-((1/3)*(t[1]))+((1/3)*(t[2]))+((1/3)*(t[3]))
 } else {
 He<-((1/2)*(t[1]))+((1/2)*(t[2]))
 }

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

20

 IOCC=((Ho/N)-(He/N))/(1-(He/N))
 return(IOCC)
}
IOCC<-compute_IOCC(model)

d. Finally, put all of the results together into a data frame:

num_incorrect=length(testLabels[testLabels!=as.array(k_argmax(model
%>% predict(test_images, verbose=0), axis=-1))])
results<-data.frame(loss, accuracy, precision, recall, f1_score,
IOCC, num_incorrect)
row.names(results)[1]<-"model"
results

loss accuracy precision recall f1_score IOCC
num_incorrect
model 0.0541 0.9857 0.9946 0.9786 0.9865 0.9713 10

e. To speed up the process, we can put these capabilities together into a function named

model_performance_statistics(), which could take the argument “model”, which is a

trained keras model. After creating this model, we could run it for every model

produced and save the results in an excel file:

model_performance_statistics<-function(model){
 classify_test_samp<-model %>% evaluate(test_images, testLabels,
verbose=0)
 loss<-classify_test_samp[1]
 accuracy<-classify_test_samp[2]

 prf1<-compute_precision_recall_f1(model)
 recall<-prf1$recall
 precision<-prf1$precision
 f1_score<-prf1$f1

 IOCC<-compute_IOCC(model)

responses_incorrect=length(testLabels[testLabels!=as.array(k_argmax(
model %>% predict(test_images, verbose=0), axis=-1))])
 results<-data.frame(loss, accuracy, precision, recall, f1_score,
IOCC, responses_incorrect)
 return(results)
}

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

21

for (i in 1:length(models)){
 model_results<-model_performance_statistics(model=models[[i]])
 row.names(model_results)[1]<-model_names[i]
 if (i==1){
 all_results<-model_results
 } else {
 all_results<-rbind(all_results, model_results)
 }
}
write.xlsx(all_results, file=paste0(save_dir, "Model performance
statistics.xlsx"), rowNames=T)

2. Another helpful document to have may be an excel workbook with the classifications by

score category for each model produced. To create this file, we could use a function called

score_category_classifications(), which could take the argument “model” (a trained keras

model). After creating this model, we could run it for every CNN produced and save the

results in an excel workbook with a separate page for each model:

score_category_classifications<-function(model){
 score_class<-data.frame(matrix(ncol=3, nrow=3))
 names(score_class)<-c("Correctly_classified", "Misclassified", "Total")
 row.names(score_class)<-c("0: Incorrect", "1: Correct", "Total")

 predicted_probs <- model %>% predict(test_images, verbose=0)
 CNN_scores <- as.array(k_argmax(predicted_probs, axis=-1))
 rater_scores<-testLabels
 classifications<-data.frame(rater_scores, CNN_scores)
 classifications$match<-
classifications$rater_scores==classifications$CNN_scores

 score_class$Total[1]<-
length(classifications$rater_scores[classifications$rater_scores==0])
 score_class$Total[2]<-
length(classifications$rater_scores[classifications$rater_scores==1])
 score_class$Total[3]<-length(classifications$rater_scores)

 incorrect_match<-
length(classifications$rater_scores[classifications$rater_scores==0&classi
fications$match==TRUE])
 correct_match<-
length(classifications$rater_scores[classifications$rater_scores==1&classi
fications$match==TRUE])
 score_class$Correctly_classified[1]<-incorrect_match
 score_class$Correctly_classified[2]<-correct_match

 score_class$Misclassified[1]<-score_class$Total[1]-incorrect_match
 score_class$Misclassified[2]<-score_class$Total[2]-correct_match

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

22

 score_class$Correctly_classified[3]<-
length(classifications$match[classifications$match==TRUE])
 score_class$Misclassified[3]<-
length(classifications$match[classifications$match==FALSE])

 return(score_class)
}

score_class_workbook<-createWorkbook()
for (i in 1:length(models)){
 classification_results<-
score_category_classifications(model=models[[i]])
 addWorksheet(score_class_workbook, model_names[i])
 writeData(score_class_workbook, model_names[i], classification_results,
rowNames = T)
 setColWidths(score_class_workbook, model_names[i], cols =
1:ncol(classification_results), widths = "auto")
}
saveWorkbook(score_class_workbook, file=paste0(save_dir, "Classifications
by score category.xlsx"), overwrite=T)

3. A final document that we should produce is the assignment file with the machine scores

added. This way, we can see which specific responses have misclassifications according to a

given model.

#Read in the assignment file
data<-readRDS(paste0(save_dir, "List of image responses with
assignment.rds"))

#Narrow down to just responses in validation sample
data<-data%>%filter(sample_assignment=="test")

#Reorder rows to match the order in array
set.seed(1234)
data<-data[sample(nrow(data), nrow(data)),]
all.equal(data$score, testLabels) #Make sure labels and scores match

[1] TRUE

data<-data[1:6]
names(data)[6]<-"human_score"
for (i in 1:length(models)){
 model<-models[[i]]
 predicted_probs <- model %>% predict(test_images, verbose=0)
 CNN_scores <- as.numeric(k_argmax(predicted_probs, axis=-1))

Using Neural Network Classification for the Automated Scoring of Image Responses in TIMSS

2023

23

 data[,6+i]<-CNN_scores
 names(data)[6+i]<-paste0(model_names[i], "_score")
}
write.xlsx(data, file=paste0(save_dir, "Validation sample information with
machine scores.xlsx"), overwrite=T)

4. The last step would be to review any responses where there are disagreements between the

human rater scores and the CNN scores. To review responses with mismatching scores,

select a model that was run and compare the human scores and the machine scores by adding

a new column, for example “match”. For any responses where “match” is false, we can copy

the image response file from the image directory to a subdirectory in the modeling folder.

selected_model<-models[[2]]
selected_model_name<-model_names[2]

data<-read.xlsx(paste0(save_dir, "Validation sample information with
machine scores.xlsx"))
data_sub<-data[1:6]
col_name<-paste0(selected_model_name, "_score")
col_name<-gsub(" ", ".", col_name)
data_sub<-cbind(data_sub, data[[col_name]])
names(data_sub)[7]<-paste0(selected_model_name, "_score")
data_sub$match<-data_sub[,6]==data_sub[,7]

mismatching_responses<-data_sub%>%filter(match==FALSE)

dir.create(paste0(save_dir, selected_model_name, " mismatching
responses/"))

for (row in 1:nrow(mismatching_responses)){
 file.copy(from=paste0(image_dir, mismatching_responses$CNTRYCODE[row],
"/", mismatching_responses$image_png[row]),
 to=paste0(save_dir, selected_model_name, " mismatching
responses/", mismatching_responses$CNTRYCODE[row], "_",
mismatching_responses$image_png[row]))
}

