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Abstract

In this project report, we report on the feasibility of automatic scoring sys-
tems for text responses from the 2016 ePIRLS. We show that the multilingual
automatic scoring approach used in this study can be applied to different lan-
guages and countries, despite their linguistic variance. To measure linguistic
variance, we used a variant of the conventional type-token-ratio, which we
refer to as STTR. We utilized two systems for automatic scoring: fuzzy lex-
ical matching (FLM) and supervised classifiers based on semantics. FLM
prioritizes accuracy but requires significant manual scoring work by human
raters. The supervised classifiers were trained using a pre-trained deep neu-
ral network (XLM-R) for multilingual texts and support vector machines.
Results showed that automatic scoring models can score accurately (κ = .755
on average using XLM-R) and efficiently (26.1% reduction of manual scor-
ing on average) across languages and countries, in the presence of linguistic
variance. However, performance varied widely across items, highlighting the
importance of investigating the determinants of automatic scoring perfor-
mance. It was found that higher levels of linguistic variance were associated
with lower automatic scoring performance. In addition, linguistic variance
and automatic scoring model performance were significantly related to sev-
eral item- and student-level characteristics. The paper concludes with a
discussion of the implications of operationalizing automatic scoring.



Introduction

Educational assessments commonly comprise a substantial number of constructed-response

(CR) items that require test takers to compose short text responses. These responses are

then evaluated with respect to predefined scoring guides. With the rise of nascent technolo-

gies in natural language processing, researchers and assessment providers are looking more

and more into the feasibility of assisting or even replacing their human scorers by means of

automatic scoring (e.g., Yamamoto, He, Shin, & von Davier, 2018; Yaneva & von Davier,

2023; Whitmer et al., 2023; Zehner, Sälzer, & Goldhammer, 2016; Sukkarieh, Von Davier, &

Yamamoto, 2012). Relatedly, after PISA switched to CBA in 2015, PISA 2018 operational-

ized a machine-supported coding system (MSCS) that allowed for the automatic coding of

approximately 25% of text responses across all countries, languages, and domains (OECD,

2019). With the motivation to be generalizable across multiple languages, the MSCS utilizes

exact-matching and automatically applies verified labels to incoming unscored responses.

A study by Zehner et al. (2021) revealed that automatic normalization steps could score

more text responses (+5.1%) with only a minor loss (-0.5%) in accuracy compared to the

MSCS.

For international large-scale assessments such as PIRLS and PISA, this feasibility of op-

erational automatic scoring remains challenging; among others, because of the assessments’

massively multilingual nature, the varying performance of automatic scoring across items,

and the assessments’ high stakes at the policy level. Besides factors determined by the set-

ting (Zesch, Horbach, & Zehner, 2023), the variability in building accurate classifiers across

items is often attributed to the corresponding differences in linguistic variance in the text

responses elicited by each item (Horbach & Zesch, 2019). That is, the more constrained the

responses are linguistically, the easier it is for the scoring model to pick up the patterns that

determine a response’s correctness from the training data and apply accurate classifications

to new data. Consider, for example, the limited variation in responses to a fictional item

such as “Why do people usually see the lightning before hearing the thunder?” opposed to

the large universe of responses to an item such as “What is the message of the story?”.

We distinguish three theoretical components of linguistic variance in short text responses

(Zesch et al., 2023): conceptual variance (i.e., the concepts elicited by an item), realization
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variance (i.e., the linguistic expression of semantic concepts and their relation; including

paraphrases, misspellings, etc.), and nonconformity variance (i.e., aberrant responses).

Therefore, this project sets out (1) to apply automatic scoring to text responses from

the 2016 ePIRLS to examine the performance of automatic scoring for its data, (2) to

assess the linguistic variance in text responses as a pivotal determinant of automatic scoring

performance, and (3) to investigate the impacts of student and item characteristics to the

linguistic variance.

New state-of-the-art benchmarks have been achieved for automatic scoring by using

supervised deep learning and transformer architectures (Haller, Aldea, Seifert, & Strisci-

uglio, 2022; Whitmer et al., 2023). In contrast though, the current project focuses on

operationally feasible approaches for international large-scale assessments and investigates

linguistic variance in responses as a crucial factor for both the established and the new

generation of automatic scoring systems (Haller et al., 2022), while still making use of

pre-trained embeddings from transformer models.

Methods

Research Design

Instrument. In PIRLS, reading literacy is defined as the ability to understand and

use written language required by society and/or valued by the individual (I. V. Mullis &

Martin, 2019). The 2016 ePIRLS was an extension of PIRLS. It was offered in 2016 as an

innovative assessment of online reading that was developed in response to the explosion of

information available on the Internet. The 2016 ePIRLS was administered as computer-

based assessment and simulated websites from the Internet, and students were required

there to navigate the simulated websites to accomplish school-based research projects or

tasks, since much online reading was done for the purpose of acquiring information. The

2016 ePIRLS assessment consisted of five tasks with each task lasting up to 40 minutes.

Each student was asked to complete two of the tasks according to a specific rotation plan.

The five 2016 ePIRLS tasks asked students to navigate through interconnected web pages

containing both textual and visual information to complete school-like assessments about

science and social studies topics. Each task involved approximately three different websites
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Figure 1 . The 2016 ePIRLS Task Mars and Its Third Item.1

totaling about five to ten web pages. Reflecting the fact that online reading often involves

sorting through more information than is necessary to achieve one’s goal, the texts contained

in the 2016 ePIRLS tasks average about 1,000 words in total (I. V. S. Mullis, Martin, Foy,

& Hooper, 2017). Figure 1 shows the sample 2016 ePIRLS task Mars. The purpose of

this item is classified as informational, and the cognitive process it measures is making

straightforward inferences.

Out of 91 items in total in the assessment, more than half are in the CR format. There

is a total of 51 CR items, two-thirds of which are dichotomous items and one-third of which

are polytomous items. One of the CR items only involved the ordering of numbers and was

thus not included in the present analysis, resulting in a total of 50 items. The CR items

are spread over the five tasks and four comprehension processes, and the maximum score

points vary across items, making it possible to examine the impacts of item characteristics.

Participants. The international PIRLS target population consists of students enrolled

in the grade that represents four years of schooling (at least 9.5 years). The analyzed dataset
1https://timssandpirls.bc.edu/pirls2016/international-results/take-the-epirls-assessment/

Mars/index-mars.html [2023-12-02]

https://timssandpirls.bc.edu/pirls2016/international-results/take-the-epirls-assessment/Mars/index-mars.html
https://timssandpirls.bc.edu/pirls2016/international-results/take-the-epirls-assessment/Mars/index-mars.html
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involves 67,070 students from 15 countries/regions, who participated in the 2016 ePIRLS as

part of PIRLS 2016 using 14 different test languages (s. Table 1).2 The data covers a wide

variety of levels of online informational reading proficiency, ranging from the United Arab

Emirates (the lowest performing country with a mean scale score of 468) to Singapore (the

highest performing country with a mean scale score of 588; I. V. S. Mullis et al., 2017).

Table 1
Number of Students per Test Language by Country/Regiona

Country Language Tag n Country Language Tag n

Chinese Taipei T. Chinese zh-TW 4,362 Singapore English en-SG 6,431

Denmark Danish da-DK 2,847 Slovenia Slovenian sl-SI 4,401

Georgia Azerbaijani az-GE 815 Sweden Swedish sv-SE 4,057

Georgian ka-GE 4,932 United Arab Emirates Arabic ar-AE 2,456

Ireland English en-IE 2,557 English en-AE 1,774

Israel Arabic ar-IL 1,185 Dubai, UAE Arabic ar-AD 1,578

Hebrew he-IL 2,768 English en-AD 5,995

Italy Italian it-IT 3,979 French fr-ADb 154

Norway Bokmål nb-NO 3,495 Abu Dhabi, UAE Arabic ar-AAD 1,651

Nynorsk nn-NOb 331 English en-AAD 2,458

Portugal Portuguese pt-PT 4,730 United States English en-US 4,114

a No data from Canada was included in the data available to the project.
b Excluded due to small sample size.

Treatment of Missing Data and Misclassification. As is common in the field of

automatic scoring, we considered the manual score provided by human scorers as the gold

standard. That is, human scores were the basis for both the training of automatic scoring

models and its evaluation. This gold standard item-level score was included directly as

a predictor, along with other student characteristics, in multilevel analyses and was also

included indirectly in the derivation of outcome accuracy measures that address automatic

scoring performance.

Despite the intense efforts made for ensuring the highest possible quality in large-scale

2See I. V. S. Mullis et al. (2017) for details on and constraints of the respective population coverage.
For better legibility, we refer to participating parties as countries in this report rather than distinguishing
countries and regions at each occurrence.
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assessments, human scorers can introduce noise into scoring process through incorrect scor-

ing if, for example, they are inattentive or the scoring guides do not cover a certain borderline

response. These human scoring mistakes usually remain obscured if no double scoring is in

place for a particular response and can sometimes be revealed by automatic scoring if very

similar responses are scored differently.

The data contained different kinds of missing values and misclassifications. First, stu-

dents can enter blank text responses. In the present study, these are considered as adminis-

tered but intentionally omitted by students. Thus, the most obvious manual mistakes that

can be dealt with is when blank responses receive a score other than specified in the scoring

guides (i.e., 9 in PIRLS). Accordingly, we excluded blank responses that have been scored

by humans as 0 (n = 1693), 1 (n = 1934), 2 (n = 188), or 3 (n = 2), totaling to 0.3 percent

of all responses in the dataset. Second, responses for which no human score has been cap-

tured in the dataset were also excluded from analysis. Third, there were some non-empty,

valid text responses misclassified as 9. To keep the linguistic variance observed in those

misclassified valid text responses, we recoded them to 0 (incorrect) responses. This treat-

ment was irrelevant for computing accuracy, but affected quadratic weighted kappa–values

because it involved weighting.

Automatic Scoring Models

International large-scale assessments present specific conditions for the automatic scor-

ing of short text responses which influence the available methodological repertoire. They

require the equivalent scoring across (i) a multitude of test languages, (ii) diverse item types

and (iii) domains, and (iv) responses with diverse orthographic and grammatical irregulari-

ties, which can be attributed to the low stakes for the participants—or their age in the case

of the 2016 ePIRLS. Furthermore, (v) the requirement for high scoring accuracy is critical,

given the significant policy implications for participating countries.

In the present study, we adopted two approaches with different foci and thus strengths

and weaknesses with respect to the aforementioned requirements: (1) fuzzy lexical matching,

matching responses against a historic response database and (2) item-specific classifiers built

by supervised learning of support vector machines with semantic sentence embeddings as
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the features. All classifiers, for both fuzzy lexical matching and the semantic ones, were

built item-dependent for test language, and country (i.e., languages were not aggregated

across different countries’ data subsets).

Fuzzy Lexical Matching (FLM). Building upon PISA’s Machine-Supported Cod-

ing System (MSCS; Yamamoto, He, Shin, & von Davier, 2017), we implemented a fuzzy

lexical matching (FLM) system of text responses in the 2016 ePIRLS to historic responses.

These historic responses stem from the same items and had been scored previously by

humans. In contrast to the MSCS, we did not require responses to match exactly charac-

ter by character and case-sensitively but instead normalized texts by means of established

preprocessing techniques from natural language processing. This makes the matching some-

what fuzzier. That is, a new text response such as “The dog runs quickly...” would not

be matched with a historic response such as “DOg run quick” under the exact-matching

MSCS but would be considered identical with our fuzzy matching procedure. Preprocessing

both responses to “dog run fast” allows them to be matched at a more simplified (and less

linguistically diverse) string level. If matched, the score of the historic response would be

propagated to the new response. The following normalization steps were applied for this:

First, (1) redundant whitespaces in the texts, such as double spaces between words, were

removed. Next, (2) punctuation was removed, and (3) responses were converted to their

lower case, followed by (4) stemming, (5) ignoring word order (bag of words) and (6) remov-

ing diacritics. Some of the steps are interdependent, e.g. words must be converted to their

lower case to match the stop word list. Other steps are language- and resource-dependent,

such as stop word removal and stemming rules. Moreover, score propagation was slightly

adapted compared to the MSCS. The MSCS requires at least five matching responses with

identical scores for propagation. This means that for a new response to be scored automat-

ically, it must match exactly at least five responses in the historical database. To propagate

scores within a matched group using FLM, on the other hand, required a minimum of three

matching responses with at least 92 percent consistent scores3 and an absolute maximum

of five deviating scores in that response group. This takes minor human misclassifications

into account while still adhering to high requirements regarding accuracy. For evaluation
3An inter-rater agreement of 92 percent is the expected domain-level standard across all items in a domain

in PISA (OECD, 2023).
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purposes, we simulated the historic database to consist of the dataset described above.

Supervised Classifiers Based on Semantics (XLM-R & SVM). In contrast to

the character-based matching described above, we additionally implemented a semantics-

based approach. To achieve this, we trained item-, country-, and language-specific classifiers

using supervised learning and response vectors from pre-trained embeddings, representing

the responses’ semantics, as its features. This was achieved using XLM-RoBERTa (XLM-R)

in its base version (Conneau et al., 2020), which is a pre-trained deep neural network with a

transformer architecture and cross-lingual representations of about one hundred languages.

XLM-R offers the potential to be used for cross-lingual transfer tasks, and also performs

well on low-resource languages (Conneau et al., 2020). When using a text response as

the input, the model’s last network layer can be considered as its semantic representation.

Specifically, this way, responses are represented by 768-dimensional vectors and responses

with vectors pointing in similar directions (i.e., with similar values) are considered semanti-

cally close. Importantly, the model’s attention mechanism provides context, allowing words

to be disambiguated by the context of the response. Thus, the text response is passed to

the model as a string, to be tokenized and vectorized based on its word order. Given the

extracted semantic response vectors as features, we trained support vector machines with

a radial kernel to build item-, country-, and language-specific classifiers.

Advantages and Disadvantages of Both Approaches. The advantage of the fuzzy

lexical matching is that it works straightforward across all test languages, reproducible, and

transparent. Its disadvantage is that it is not applicable to any unmatched response, which

becomes very prevalent in items with medium and high linguistic variance in the text re-

sponses. We report this as the degree of efficiency in the results. Also, while the basic

concept of string-matching makes the algorithm language-agnostic, the coverage of auto-

matically scorable responses (i.e., added value in efficiency) does vary by language due to

linguistic phenomena and characteristics of the country-specific dataset (e.g., frequency of

incorrect, correct, and blank responses), making the equivalence of its cross-lingual applica-

bility an empirical matter. On the other hand, the supervised approach is known to provide

scoring accuracy close to that of human performance. One advantage of these classifiers is

that they can score every new response, unlike fuzzy lexical matching, and XLM-R provides
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sufficiently stable representations for most of the fourteen test languages in the analyzed

data, which results in different human-machine agreements. Additionally other inherent

language-dependent characteristics and variance also play an important role, affecting the

reliability of response representations and success of the machine learning model in classi-

fying unseen instances. However, scoring accuracy can vary greatly across items and is an

empirical question for given test languages, items, and training data size for a particular

test language.

Evaluation Metrics. We report accuracy and quadratic weighted kappa to evaluate

scoring performance (for FLM and XLM-R & SVM) and additionally efficiency for FLM.

Efficiency measures the extent to which human scoring effort is reduced by using fuzzy lexi-

cal matching and score propagation. This measure is not applicable to supervised classifiers

based on semantics, as they score all text responses without exception. Accuracy quantifies

the percentage of exact agreement between machine-predicted scores and human-assigned

scores. We evaluate the accuracy measure for both fuzzy lexical matching and supervised

classifiers based on semantics. Quadratic weighted kappa (QWK) (Cohen, 1960) similarly

captures this agreement but corrects for agreement by chance. We use QWK as a supple-

mentary measure for supervised classifiers based on semantics. For evaluating the accuracy

and quadratic weighted kappa of automatic scoring performance, a 5-fold cross-validation

was conducted, repeated five times. A split into five folds allows a sufficient representation

of skewed scores within single folds.

Assessing Linguistic Variance

In order to assess linguistic variance of responses, we considered basic measures that op-

erate on a set of responses to one item as a corpus. We followed Horbach and Zesch (2019)

and used a variant of the type-token ratio (TTR), STTR (sampled type-token ratio).

TTR is normally used to measure the lexical variance within a single text by dividing the

number of different tokens—that is, types—in a text by the overall number of tokens. In our

analyses, however, we aimed to measure the variance operationalized through lexical diver-

sity across a set of responses and languages. Therefore, we first built a pseudo-document by

concatenating tokens drawn randomly from the entire pool of responses for a certain subset.



AUTOMATIC SCORING AND LINGUISTIC VARIANCE 9

As TTR values are known to be affected by text length (Koizumi, 2012), we constructed

the pseudo-documents by sampling a fixed number of tokens (100) from the entirety of re-

sponses of a particular subset of interest and repeated this sampling several times (5000) in

order to avoid artifacts from random sampling (cf. Horbach and Zesch (2019)). This way,

STTR values were comparable across items and languages. The relatively small number

of sampled tokens and the high number of iterations allowed STTR to be used even for

items with very low linguistic diversity and small subsamples, as required by the multilevel

analysis described in the following section.

Multilevel Analyses

Multilevel analyses can be useful in decomposing the sources of variance by different

clusters. This allows for a better understanding of the influences of student- and item-

related factors on linguistic variance simultaneously. The models described below aim to

analyze the sources of linguistic variance in text responses with respect to item- and student-

related characteristics. Additionally, they aim to investigate the resulting relationship on

the performance of automatic scoring.

STTR is calculated at the level of pseudo-documents consisting of several responses

written by students who responded to that item from a certain language-country group. The

data follows a multilevel structure, depending on how pseudo-documents are constructed.

There are two ways to construct a pseudo-document for analysis. The first involves collecting

text responses per item in each language-country group, which allows for investigation of

item-related characteristics. The second involves breaking down text responses per student

group, item, and language-country group, allowing for simultaneous examination of the

effects of item- and student-related characteristics.

We analyzed two sets of STTR values. The first set (STTR(1)
ig ) was calculated for

each item per language-country group, while the second set (STTR(2)
pig) was calculated

at the level of the combination for student-characteristics, including gender and L1/L2

speaker status. Regarding the first set of STTR values (STTR(1)
ig ), the pseudo-document is

constructed for each item (level 1; denoted as i) per language-country group (level 2; denoted

as g). Membership to a certain language-country group can be reflected as a random
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effect, allowing for variation across different language-country groups. As an extension,

item characteristics, such as the maximum score points for an item and its position within

the passage, can be specified as fixed effects (details below). It is important to note that

STTR
(1)
ig values for two-level models are directly extracted from the student delivery system

and were not yet matched to the public use file, making them more abundant. In total,

STTR
(1)
ig values consisted of 1,000 records for 50 items grouped into 20 language-country

clusters.

On the other hand, if the pseudo-document is constructed at a more granular level,

taking into account student characteristics as in the STTR(2)
pig, a lower cluster was added,

resulting in a three-level structure: one for students grouped by gender, L1/L2 speaker

status, and their scores on that item (level 1; denoted as p), one for items (level 2; denoted

as i), and one for language-country groups (level 3; denoted as g). Similarly, character-

istics of students for that combination of variables can be specified as fixed effects, while

items and language-country groups can be considered as random effects. Not only student

characteristics (level-1 covariates), but also item-related characteristics can be included as

level-2 covariates. To accomplish this, we calculated the STTR(2)
pig values by taking into

account the information about students’ characteristics that was recorded in the public use

file, matching student identifiers. Pseudo-documents were created for each combination of

student characteristics (gender, L1/L2 speaker status, and corresponding scores for each

item), items, and language-country groups. Cases where the number of text responses used

for constructing pseudo-documents was less than 30 were excluded. Therefore, the final

dataset used for multilevel analyses comprises 4,863 cases, and the range of text responses

used for constructing pseudo-documents was between 31 and 426. In total, we fit the fol-

lowing four models. For fitting multilevel models, the package lme4 (v. 1.1-35.1; Bates,

Mächler, Bolker, & Walker, 2014) in R 4.2.1 was used. In the results, restricted maximum

likelihood (REML) estimates are reported.

Model M1: Variance-components models. The most basic approach is to model

the relationship of item characteristics and STTR without any covariates. This involves

decomposing the total variance by the respective clusters: all realizations of language-

country group g for STTR(1)
ig as well as language-country group g and item i for STTR(2)

pig,
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respectively. Equation (1) denotes the unconditional random-intercept model where item-

level STTR values are nested in language-country groups. In this two-level model, the total

variance in STTR is split into two error components: ζg, which is shared between items of

the same language-country groups, and ϵig, which is unique for each item.

Next, relatively finer STTR values for groups of students are nested in items and in

language-country groups, as formulated in Equation (2). This three-level model suggests

that STTR values for the same language-country group can be correlated, noted as the

shared level-3 random intercept ζ(3)
g . Conditional on ζ

(3)
g , STTR values for the same item

are not independent but correlated, and they depend on the shared level-2 random inter-

cepts, ζ(2)
ig . In this model, the level-1 variance θ can be interpreted as the between-students’

characteristics, within items, and within-language-country variance. The level-2 variance

ψ(2) is the between-items, within-language-country variance. And the level-3 variance ψ(3) is

the between language-country variance. All three error components are uncorrelated across

language-country groups, the level-2 random intercepts and level-1 residuals are uncorre-

lated across items, and the level-1 residuals are uncorrelated across student characteristics.

STTR
(1)
ig = β + ζg + ϵig,

ζg ∼ N (0, ψ),

ϵig ∼ N (0, θ).

(1)

STTR
(2)
pig = β + ζ

(2)
ig + ζ(3)

g + ϵpig,

ζ
(2)
ig ∼ N (0, ψ(2)),

ζ(3)
g ∼ N (0, ψ(3)),

ϵpig ∼ N (0, θ).

(2)

Since our focus is on decomposing linguistic variance by those clusters, intra-class cor-

relations (ICCs) are reported as indicators of how much of the total variability is explained

by group membership. More specifically, ICC by language-country groups (γg) resulting

from the two-level model is written in Equation (3). For three-level models, two types of

ICCs can be considered as written in Equation (4). For the same language-country group

g, different items i and i′ and different student characteristics p and p′, the ICC becomes
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ρ(g). For the same language-country group g and for a given item i, ICC becomes ρ(i, g).

ρ = ψ

ψ + θ
. (3)

ρ(g) = ψ(3)

ψ(2) + ψ(3) + θ
,

ρ(i, g) = ψ(2) + ψ(3)

ψ(2) + ψ(3) + θ
.

(4)

Model M2: Random-intercept STTR models with item characteristics. Next,

expanding the variance-components models in M1, we include the following item character-

istics in M2. The following item characteristics are considered.

• Process: four cognitive processes of comprehension (I. V. S. Mullis & Martin, 2015)

– Focus On and Retrieve Explicitly Stated Information [F]
– Make Straightforward Inferences [M]
– Interpret and Integrate Ideas and Information [I]
– Evaluate and Critique Content and Textual Elements (reference group)

• Passage: school-based online reading tasks, each of which involves 2–3 different web-

sites, totaling to 5 to 10 web pages, together with a series of comprehension questions

based on the task (Martin, Mullis, & Foy, 2016)

– Mars [M]
– Rainforests [R]
– The Legend of Troy [T]
– Zebra and Wildebeest Migration [Z]
– Dr. Elizabeth Blackwell (reference group)

• Position: position of the item within the passage4

• Maximum Points: maximum score for an item’s response, ranging from 1 to 3

• Difficulty5: proportion of incorrect responses per item as a proxy of item difficulty,

with higher values indicating more difficult items
4We assume that the impact of the within-passage position is still important, as students took two

passages according to the rotated matrix sampling design (Martin et al., 2016), which cancels out the
impacts of between-passage position.

5Retrieved from https://timssandpirls.bc.edu/pirls2016/international-database/index.html
[2023-12-01]

https://timssandpirls.bc.edu/pirls2016/international-database/index.html
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The inclusion of item characteristics results in Equation (5), where xkig is the kth item-

related predictor and βk indicates the kth regression coefficient for the associated predictor.

In this model, item-characteristics are level-1 predictors.

STTR
(1)
ig = β1 + ζg + β2x2ig + ...+ βkxkig + ϵig,

ζg ∼ N (0, ψ),

ϵig ∼ N (0, θ).

(5)

Similarly, for the three-level model, the item characteristics can be specified as well.

Unlike the two-level model, item-characteristics are included as level-2 predictors, which

can be written as Equation (6).

STTR
(2)
pig = β1 + ζ

(2)
ig + ζ(3)

g + β2x2ig + ...+ βkxkig + ϵpig,

ζ
(2)
ig ∼ N (0, ψ(2)),

ζ(3)
g ∼ N (0, ψ(3)),

ϵpig ∼ N (0, θ).

(6)

The comparison of M1 and M2 for each two-level model and three-level model reveals

how influential the item characteristics are for explaining the linguistic variance.

Model M3: Random-intercept STTR models with student characteristics.

Another way to expand the variance-components models in M1 is to specify student char-

acteristics to investigate their impact. It is important to note that student characteristics

cannot be included in the two-level model, since the lowest unit of STTR was at the item-

level. Therefore, M3 is only considered for the three-level model with the following student

characteristics.

• Gender: 1 for female (reference group) and 2 for male

• L1/L2: L1 refers to the student’s first language, while L2 refers to their second

language or the language they are currently learning. This variable was constructed

in the following way by utilizing the information collected and provided in the public

use file database. First, we started with the questionnaire item ASBG03: How often

do you speak <language of test> at home? by recoding the first two options (1
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and 2) as 0, representing L1 (reference group), and the latter two options (3 and 4) as 1,

representing L2. Further, if the response to ASBG03 was not provided, ASBH17: How

often does your child speak <language of test> at home? was additionally

used with the same recoding scheme. Below are the response options for ASBG03 and

ASBH17, respectively.

1. I always speak <language of test> at home | Always

2. I almost always speak <language of test> at home | Almost always

3. I sometimes speak <language of test> and sometimes speak another language

at home | Sometimes

4. I never speak <language of test> at home | Never

• Score: 0 for incorrect responses for all items, and 1 for correct response for dichoto-

mous items or partially correct responses for polytomous items. Maximum score

points were up to 2 or 3 for polytomous items.

The model formulation for M3 7 is the same as M2 in Equation 6 except that explanatory

variables are now level-1 student characteristics. For the ease of notation, level-1 predictors

(student characteristics) are denoted as zpig with the associated regression coefficients of

γs. The comparison of M1 and M3 for three-level model reveals how influential the student

characteristics are for explaining the observed linguistic variance in text responses.

STTR
(2)
pig = β1 + ζ

(2)
ig + ζ(3)

g + γ2z2pig + ...+ γkzkpig + ϵpig,

ζ
(2)
ig ∼ N (0, ψ(2)),

ζ(3)
g ∼ N (0, ψ(3)),

ϵpig ∼ N (0, θ).

(7)

Model M4: Random-intercept STTR models with item- and student-related

characteristics. The most comprehensive model specified in this study utilizes both

item-related (xig) and student-related (zpig) characteristics. M4 can be written as Equa-

tion (8).
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STTR
(2)
pig = β1 + ζ

(2)
ig + ζ(3)

g + β2x2ig + ...+ βkxkig + γ2z2pig + ...+ γkzkpig + ϵpig,

ζ
(2)
ig ∼ N (0, ψ(2)),

ζ(3)
g ∼ N (0, ψ(3)),

ϵpig ∼ N (0, θ).

(8)

Comparisons of M2 vs. M4 or M3 vs. M4 for the three-level models reveal how much

the other set of characteristics contribute to explain the total variance of STTR.

Results

This section first reports performance of automatic scoring for the employed Fuzzy Lex-

ical Matching (FLM) and scoring with XLM-R in terms of reduction in manual effort (i.e.,

efficiency) and agreement with human scores (i.e., accuracy), respectively. Next, it presents

the relationship between linguistic variance in text responses and item and student char-

acteristics. Finally, it reports the relationship of automatic scoring performance—again, in

terms of efficiency and accuracy—with linguistic variance, item, and student characteristics.

Performance of Automatic Scoring

In terms of agreement between human and machine scores, the performance of automatic

scoring varied mostly across items and partly across country-language groups. The highest

agreement was found for Item B03 (κ = .966) and the lowest agreement was found for

Item M20 (κ = .476), which is considered a range of fair to good up to excellent agreement

beyond chance (Fleiss, 1981). Out of a total of 50 items, 36 show an agreement of at least

κ ≥ .650, 22 items of at least κ ≥ .750, and 11 items of at least κ ≥ .850. The average

agreement across all items and country-language groups is κ = .745, which is at the upper

boundary of fair to good agreement beyond chance.

With respect to country-language groups (Table 2), the highest agreement between

human and machine was observed for zh-TW (κ = .814), followed by en-SG (κ = .804), and

en-AD (κ = .795). The lowest agreement on average was observed for az-GE (κ = .706).

When comparing the automatic scoring by XLM-R for different countries that use the
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same test language, agreements were similarly high. Both Arabic and English were used as

the test language in multiple countries. For Arabic, agreements ranged between κ = .720

(ar-IL) and κ = .772 (ar-AD), and for English, they ranged from κ = .723 (en-IL) to

κ = .804 (en-SG).

It is important to note that the overall agreement between automatic and human scoring

is higher when including blank responses, as their scoring is straightforward. However, they

are typically included in reporting inter-rater agreement for indicating the effective oper-

ational impact automatic scoring would have. Blank responses constitute a non-negligible

portion of the total responses, varying substantially across languages and countries (10.6%

on average, ranging from 2.3% for en-SG to 33.6% for az-GE). With blank responses not

including any linguistic variance, the efficiency of the FLM approach is affected similarly.

FLM reaches its highest efficiency (again, see Table 2) for az-GE (37.9%) and zh-TW

(32.0%), while it is lowest for he-IL (17.1%) and for en-IE (17.7%). Essentially, the manual

scoring effort can be reduced by about 17% for these when applying FLM. The reduced

efficiency, compared to the other language-country groups, is likely attributable to signifi-

cant realization variance (lexical diversity, misspelling, etc.) or conceptual heterogeneity in

responses as their percentage of blank responses is relatively low.

When responses exhibit a wide variation, the threshold for propagating scores auto-

matically is not passed, leading to the need for manual scoring. Moreover, low levels of

agreement in FLM can either indicate a negative impact of the text preprocessing, human

scoring inconsistencies, or both. That is, on the one hand, preprocessing can sometimes

remove relevant information for determining a response’s score. On the other hand, closer

examination of the responses revealed a significant degree of inconsistencies in the human

scores, where different scores were assigned to identical responses.

As an example, the prevalence of misclassifications was particularly pronounced in

Item B10 of Passage [B] for en-AD. The item received a total of n = 2, 375 responses, out of

which 146 were blank. Four of these blank responses were not assigned the intended code 9

(i.e., invalid). Three blank responses were erroneously scored as 0 – No Comprehension and

two as 1 – Partial Comprehension. More significantly, a non-negligible portion of identical

text responses had inconsistent scores. For instance, out of 48 responses, reading she kept
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Table 2
Automatic Scoring Performance

Fuzzy Lexical Matching XLM-R
Efficiency Accuracy κ Accuracy κ

% % %

ar-AAD 26.6 98.6 .935 92.7 .747
ar-AD 28.5 98.2 .914 91.1 .772
ar-AE 27.7 98.0 .964 91.0 .784
ar-IL 25.8 98.0 .853 87.8 .720

az-GE 37.9 98.9 .969 90.4 .706
da-DK 19.1 93.0 .722 84.6 .710

en-AAD 26.7 97.6 .947 88.4 .790
en-AD 23.3 97.6 .930 87.1 .795
en-AE 27.5 98.6 .914 88.7 .772
en-IE 17.7 96.3 .812 85.1 .723
en-SG 27.2 97.2 .926 88.3 .804
en-US 17.8 96.9 .903 84.4 .742
he-IL 17.1 97.9 .869 85.1 .718
it-IT 26.4 97.9 .966 86.8 .762

ka-GE 27.5 97.0 .937 88.9 .787
nb-NO 17.8 94.6 .761 86.2 .742
pt-PT 22.1 98.2 .959 86.9 .757

sl-SI 24.9 96.1 .899 84.7 .718
sv-SE 18.8 94.6 .808 86.6 .743

zh-TW 32.0 96.0 .919 89.7 .814

working hard as a general doctor, 33 were scored in accordance with the scoring guide

(1 – Partial Comprehension) and 15 as 2 – Full Comprehension. Consequently, and with

this only being one type of inconsistency, both training and and evaluation of automatic

scoring were impeded.

Figure 2 presents an overview of both FLM’s efficiency and XLM-R’s scoring perfor-

mance in terms of quadratic weighted kappa. Obviously, both measures of automatic scor-

ing performance varied widely from item to item, although though the overall performance

was acceptable on average. For the operational use of automatic scoring, certain items could

be identified for which it might be sufficiently mature, whereas others would still require

manual scoring to a smaller or even larger extent. This highlights the importance of under-

standing the factors that determine the performance of automatic scoring. Consequently,

the following analyses first assess the linguistic variance prevalent in text responses and
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(b) QWK of XLM-R
Figure 2 . Performance of Automatic Scoring

then examine its relationships with item and student characteristics as well as, ultimately,

with automatic scoring performance.

Descriptive Statistics of Linguistic Variance

Instrument-Related Factors (STTR(1)
ig ). Linguistic variance measured through STTR

is illustrated in four figures, namely by language-country group, by item, by process, and

by an item’s position within its passage. Firstly, as shown in Figure 3, students in ar-AAD

showed the largest median STTR value (.711) while those in zh-TW showed the smallest

median STTR value (.445) across items. There were two languages, Arabic and English,

that were used in different regions or countries. Within the Arabic language, AAD stood

out as having the largest linguistic variance, followed by AD and AE with very similar
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Figure 3 . Linguistic Variance by Language-Country Group (STTR(1)
ig )

median STTR values (.646), and followed by IL with a somewhat smaller median STTR

value (.621). For English, there were six regions/countries in total. In contrast to Ara-

bic, AE and AAD showed the largest median STTR value (.666 and .656) followed by AD

(.611), US (.594), IE (.569), and SG (.541). Ranking-wise, means of STTR showed the

same pattern. Standard deviations of STTR values iterated over 5000 times for each item

per language-country group were very consistent with .10 to .11.

Second, Figure 4 shows the distribution of STTR per item across language-country

groups. Comparing the two figures (3 and 4) shows that most of the systematic variation is

at the item level, as the range of within-item STTR is much smaller compared to language-

country specificity. This is in line with conceptual assumptions, since the same set of

translated items elicits similar vocabulary spaces across countries and language groups.

Interestingly, STTR and item difficulty were moderately correlated (r = .529). That is,
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Figure 4 . Linguistic Variance by Item (STTR(1)
ig )

more difficult items tended to elicit relatively more heterogeneous responses from students,

as indicated by greater linguistic variance in general.

Figure 5 illustrates that the median STTR value was lowest for “Focus On and Retrieve

Explicitly Stated Information” [F] at .472. The other three processes had rather similar

median STTR values: .621 for “Make Straightforward Inferences” [M], .673 for “Interpret

and Integrate Ideas and Information” [I], and .662 for “Evaluate and Critique Content and

Textual Elements” [E].

Furthermore, as Figure 6 shows, median STTR values tended to become larger as stu-

dents progressed within the passage. Per passage, the correlation between the sequence

of the item and the median STTR values ranged from r = .267 in The Legend of Troy,

r = .363 in Zebra and Wildebeest Migration, r = .484 in Dr. Elizabeth Blackwell, r = .544

in Rainforests, and r = .659 in Mars. This could be a design feature of the 2016 ePIRLS
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Figure 5 . Linguistic Variance by the Cognitive Process Elicited by an Item (STTR(1)
ig )

assessment, if item developers deliberately placed more complex thinking items in the later

position within the passage.

Student-related Factors (STTR(2)
pig). Distribution of linguistic variance was also

examined by student characteristics: gender, L1/L2 speaker status, and the score (see

Figure 7 and Figure 8). For student characteristics, STTR(2)
pig was used. By gender, median

values of linguistic variance were almost identical: .589 for girls and .608 for boys, with a

difference of .019. Concerning L1/L2 speaker status, median values of linguistic variance

were almost identical as well between the native speaker (L1; .604) compared to the L2

speaker (.585) with a difference of .019.

Finally, when considering the score of responses and an item’s maximum points (refer

to Figure 8), it is evident that linguistic variance had the highest median STTR value

in incorrect responses compared to correct responses. In fact, correct responses generally

exhibited smaller STTR values for the given maximum points of items.

Decomposing Linguistic Variance in Multilevel Analyses

The results of multilevel analyses for two sets of STTR values are presented in this

section. Specifically, STTR(1)
ig is used for two-level models, while STTR(2)

pig is used for three-
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Figure 8 . Linguistic Variance by Score Level and an Item’s Maximum Points (STTR(2)
pig)

level models. Two-level models are employed to examine the relationship between linguistic

variance and item characteristics, taking into account the possibility of average linguistic

variance varying across language-country groups. Three-level models are extended versions

used to examine the relationship between linguistic variance and student characteristics.

These models take into account that the average linguistic variance may vary across items

and language-country groups.

Results of the Two-level Models. As a baseline model, M1 is useful for decompos-

ing the total variance into different clusters. The ICC of M1 for the two-level model was

ρ = .199, indicating that 19.9% of the total linguistic variance is explained by language-
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country groups.

Table 3
Effects of Item Characteristics on Linguistic Variance

Model 1 Model 2
Predictors Estimate SE Estimate SE
(Intercept) .594*** .013 .416*** .019
Process [F] –.078*** .010
Process [M] .010 .008
Process [I] .041*** .007
Passage [M] .003 .006
Passage [R] .016* .008
Passage [T] .020** .008
Passage [Z] .049*** .007
Position .004*** .001
Max. Points [2] .025*** .006
Max. Points [3] –.003 .011
Difficulty .295*** .017
Random Effects
ψ .003 .003
θ .013 .005
Marginal R2 .000 .501
Conditional R2 .199 .709

*** for p < .001, ** for p < .01, and * for p < .05

The estimated regression coefficients using STTR(1)
ig as the dependent variable are shown

in Table 3. For M2, item-related characteristics were specified as main effects only at this

point. At the significance level of α = .001, the variables Process [F], Process [I], Passage

[Z], Position, Maximum Points [2], and Difficulty were statistically significant, controlling

for the other covariates. Passages [R] and [S] were found to be significant at a more liberal

significance level. More specifically, regarding process, the expected STTR is .078 lower

for “Focus on and retrieve explicitly stated information” items compared to “Evaluate and

critique content and textual elements” items, controlling for other covariates. Given that

[E] items are supposed to require more complex thinking to articulate and respond than [F]

items, the observation of less linguistic variance for [F] items is consistent with expectation.

Another process, “Interpreting and Integrating Ideas and Information” items, which are

also used for more complex responses, tend to show more linguistic variance compared to

[E] items, as much as .041 on average.
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In terms of process, the items “Rainforests”, “The Legend of Troy”, and “Zebra and

Wildebeest Migration” showed larger linguistic variance on average than the items “Dr.

Elizabeth Blackwell”, while the items “Mars” showed similar levels of linguistic variance,

controlling for other covariates. Next, as shown in the 6, the STTR was estimated to

increase on average by as much as .004 when the item is located in the later position.

Regarding maximum score points, the linguistic variance for 3-score point items was not

statistically different from the 1-score point items, while 2-score point items tended to show

a slightly larger linguistic variance on average. This could be due to the fact that most of

the items are 1-score point items (36 out of 50) and there are only three 3-score point items.

Finally, the estimated regression coefficient for Difficulty shows that more difficult items are

associated with higher STTR by an average of .295, controlling for other covariates. This

result is not surprising given that items that require students to provide longer responses

may be more difficult items.

When these item characteristics were specified as main effects in M2, the marginal

R2 = .501. This suggests that the linguistic variance explained by the item characteristics

is 50.1%. Together with the variance explained by the language-country groups, the total

variance explained by the fixed and random effects is 70.9%, as shown in the conditional

R2.

Results of the Three-Level Models. Similar to the two-level models, M1 was used

to decompose the total variance into different clusters. In particular, two types of ICCs

obtained from M1 of the three-level model showed that ρ(g) = .093 and ρ(i, g) = .482. These

values indicate that 9.3% of the total variation in linguistic variance is explained by between-

language/country groups, and 48.2% is explained by between-item within-language/country

groups.

Table 4 reports estimated regression coefficients for three-level models with STTR(2)
pig as

the dependent variable. Consistent with the two-level model, M2 included only item-related

characteristics as main effects. In addition, for the three-level model only, M3 specified only

student-related characteristics as main effects, while M4 specified both student-related and

item-related effects as the most general model.

Regarding M2, the pattern of item-related effects is consistent with the two-level model.
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The only difference is that passages [R] and [T] are no longer significantly different from the

reference passage [D], and the effects of maximum score points were reversed when STTR

values were calculated taking into account student characteristics. However, the effects of

Process, Position, and Difficulty are still in line with the expectation as well as the empirical

results of the two-level model. Specifying these level-2 item characteristics explained up to

29.0% of the linguistic variance, as shown in the marginal R2.

In M3, only student characteristics were specified as predictors. In line with concep-

tual assumptions, significantly less linguistic variance was observed for correct responses

compared to incorrect responses. On average, a score of 1 tended to show .140 less STTR

values, a score of 2 tended to show .199 less STTR values, and a score of 3 tended to show

.316 less STTR values compared to incorrect responses (score of 0), controlling for gender

and L1/L2 status. As shown in the previous literature, the quantified linguistic variance

confirmed that there are more different ways to answer incorrectly than to answer correctly.

Regarding gender, it was somewhat unexpected that boys exhibit statistically larger STTR

values than girls, although the magnitude is very small at .011 when controlling for other

variables. Similarly, it was unexpected that L1L2 status had no significant effect, although

the direction of the estimate is consistent with what was observed in Figure 7 (right). With

this smaller set of student characteristics as fixed effects, 27.1% of the linguistic variance

was explained. Together with the random effects by level-2 and level-3 clusters, the total

explained variance of STTR values was up to 84.9%. This is because student characteristics

as level 1 predictors explained a large amount of the residual variance that was not modeled

in M1 and M2.

Finally, when both item-related and student-related predictors were specified in M4, the

variance explained by the fixed effects was about 51.1%. The pattern of significant variables

remained the same, except for maximum score points and passage [T]. The significance

level of Passage [T] was at the border in M2 (p = .068), so the effect of this variable seems

to be sensitive to the model specifications. Given that there are relatively fewer items

with maximum scores of 2 and 3, the result of this variable seems to be sensitive to other

controlling variables as well.
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Table 4
Effects of Item and Student Characteristics on Linguistic Variance

Model 1 Model 2 Model 3 Model 4
Predictors Estimate SE Estimate SE Estimate SE Estimate SE
(Intercept) .573*** .012 .430*** .021 .646 .009 .512*** .021
Process [F] –.082*** .011 –.069*** .012
Process [M] –.001 .009 .012 .010
Process [I] .038*** .009 .044*** .010
Passage [M] –.003 .008 .000 .008
Passage [R] .006 .009 .004 .010
Passage [T] .017 .009 .028** .010
Passage [Z] .045*** .008 .050*** .009
Position .004*** .001 .004*** .001
Max. Points [2] .008 .007 .039*** .008
Max. Points [3] –.037** .014 .065*** .016
Difficulty .239*** .020 .154*** .022
Gender [boys] .011*** .002 .010*** .002
L1L2 [L2] –.001 .003 –.001 .003
score [1] –.140*** .002 –.138*** .002
score [2] –.199*** .004 –.202*** .004
score [3] –.316*** .008 –.322*** .008
Random Effects
ψ(2) .012 .004 .014 .007
ψ(3) .002 .003 .001 .002
θ .011 .011 .004 .004
Marginal R2 .000 .290 .271 .511
Conditional R2 .575 .553 .849 .837

*** for p < .001, ** for p < .01, and * for p < .05

Relationship between Linguistic Variance and Scoring Performances

In this study, it is hypothesized that the linguistic variance impacts the performances

of two automatic scoring approaches. First, the relationship between linguistic variance

measured via STTR and the accuracy of the supervised classifiers based on semantics

was examined (Figure 9 top left). Pearson correlation coefficient was estimated as –.235

(p − value < .001) and Spearman’s rank correlation was –.314, both suggesting that less

linguistic variance is associated with higher accuracy of the automatic scoring models. A

similar analysis was also conducted for the accuracy of the fuzzy lexical matching (Figure

9 top right). The magnitude of correlation was not different from zero: Pearson’s corre-

lation coefficient was .004 (p − value = .892) and Spearman’s rank correlation was -.028.
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For the fuzzy lexical matching, the major performance metric is efficiency (i.e., the pro-

portion of automatically scored responses)6. When efficiency was examined in relation to

the STTR (Figure 9 bottom right), Pearson correlation coefficient was estimated as –.393

(p− value < .001) and Spearman’s rank correlation was –.230, both again suggesting that

less linguistic variance can lead to scoring more of students’ text responses based on the

fuzzy lexical matching approach.

To further investigate the relationship between linguistic variance and scoring perfor-

mances, similar multilevel analyses were performed. Three types of dependent variables

were used: 1) accuracy of supervised classifiers based on semantics approach (Accuracy

(XLM-R)), 2) accuracy of fuzzy lexical matching approach (Accuracy (FLM)), and 3) ef-

ficiency of fuzzy lexical matching approach (Efficiency (FLM)). M1 (Equation 9) simply

decomposes the variation of accuracy by language-country groups, M2 (Equation 10) is a

simple random-intercept model with a STTR
(1)
ig as a single predictor. M3 (Equation 11)

was also performed to examine the effect of STTR(1)
ig , after controlling for other item char-

acteristics. It total, three multilevel models were used for each of the dependent variable.

Model formulations are written as follows with the example of the accuracy of supervised

classifier approach (Accuracy(XLM−R)), and the same models were conducted with respect

to the accuracy of fuzzy lexical matching (Accuracy(F LM)) and the efficiency of the latter

(EFF (F LM)).

Accuracy
(XLM−R)
ig = β + ζg + ϵig,

ζg ∼ N (0, ψ),

ϵig ∼ N (0, θ).

(9)

Accuracy
(XLM−R)
ig = β1 + ζg + β2STTR

(1)
ig + ϵig,

ζg ∼ N (0, ψ),

ϵig ∼ N (0, θ).

(10)

6Note that efficiency measure is not relevant for the supervised classifier approach since all text responses
are automatically scored without exceptions, which means 100% efficiency.
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Figure 9 . (a) Relationship between Accuracy (XLM-R) and STTR (top left) (b)
Relationship between Accuracy (FLM) and STTR (top right), and (c) Relationship

between Efficiency (FLM) and STTR (bottom right)
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Table 5
Effects of Linguistic Variance and Item Characteristics on the Accuracy of XLM-R

Model 1 Model 2 Model 3
Predictors Estimate SE Estimate SE Estimate SE
(Intercept) .877*** .005 1.036*** .018 .978*** .015
STTR –.267*** .027 –.111*** .022
Process [F] .032*** .007
Process [M] .021*** .005
Process [I] .020*** .005
Passage [M] .011* .005
Passage [R] –.029*** .005
Passage [T] .004 .005
Passage [Z] –.011* .005
Position .000 .000
Max. Points [2] –.166*** .005
Max. Points [3] –.236*** .008
Difficulty .007 .014
Random Effects
ψ < .001 < .001 < .001
θ .010 .009 .002
Marginal R2 .000 .099 .727
Conditional R2 .035 .182 .791

*** for p < .001, ** for p < .01, and * for p < .05

Accuracy
(XLM−R)
ig = β1 + ζg + β2STTR

(1)
ig + β3x3ig + ...+ βkxkig + ϵig,

ζg ∼ N (0, ψ),

ϵig ∼ N (0, θ).

(11)

Accuracy of Automatic Scoring with XLM-R. Table 5 summarizes the results

of three multilevel models with Accuracy(XLM−R)
ig as the dependent variable. M1 estimates

the grand mean of accuracy as .877. While language-country membership explains 19.9%

of the total variance in linguistic variance (STTR), it only explains approximately 3.5%

of the variation in accuracy. This finding is highly relevant because it suggests that the

multilingual automatic scoring approach used in this study can be applied to different

languages and countries, despite their linguistic differences reflecting their unique language-

country characteristics.
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Table 6
Effects of Linguistic Variance and Item Characteristics on the Efficiency of FLM

Model 1 Model 2 Model 3
Predictors Estimate SE Estimate SE Estimate SE
(Intercept) .246*** .012 .703*** .031 .579*** .041
STTR –.769*** .041 –.626*** .060
Process [F] .106*** .019
Process [M] .020 .015
Process [I] –.018 .015
Passage [M] –.102*** .012
Passage [R] –.047** .014
Passage [T] –.060*** .015
Passage [Z] –.086*** .014
Position .004*** .001
Max. Points [2] –.080*** .012
Max. Points [3] –.079*** .022
Difficulty .122** .037
Random Effects
ψ .002 .006 .005
θ .030 .022 .017
Marginal R2 .000 .250 .379
Conditional R2 .073 .416 .527

*** for p < .001, ** for p < .01, and * for p < .05

Efficiency of Fuzzy Lexical Matching. Finally, Table 6 summarizes the results

of the efficiency measure for the fuzzy lexical matching approach with EFF
(F LM)
ig as the

dependent variable. Since fuzzy lexical matching only provides automatic scores based

on a stochastic matching algorithm, only 24.6% of text responses could be scored by the

machine, while approximately 75% of responses still required human scoring. Language-

country groups can explain less of the variation in efficiency, about 7.3%, compared to

the 19.9% explained in the linguistic variance (STTR), which empirically supports the

largely language-agnostic feature of the FLM system. The matching algorithm becomes

more powerful when text responses are more homogeneous. This intuition is also confirmed

by the significant relationship with STTR shown in M2: a 0.10 increase in STTR value

is likely to increase human scoring work by as much as 7.7%. After controlling for item

characteristics, the decrease in efficiency associated with a 0.10 increase in STTR value

reduced to 6.3%, as shown in M3.
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Table 7
Effects of Linguistic Variance and Item Characteristics on the Accuracy of FLM

Model 1 Model 2 Model 3
Predictors Estimate SE Estimate SE Estimate SE
(Intercept) .971*** .003 .986*** .011 .971*** .015
STTR –.026 .017 .032 .023
Process [F] .004 .008
Process [M] .003 .006
Process [I] –.004 .006
Passage [M] –.001 .005
Passage [R] –.007 .006
Passage [T] –.021*** .006
Passage [Z] –.014* .006
Position .000 .000
Max. Points [2] –.070*** .005
Max. Points [3] –.069*** .009
Difficulty .022 .015
Random Effects
ψ <.001 <.001 <.001
θ .004 .004 .003
Marginal R2 .000 .011 .608
Conditional R2 .037 .047 .307

*** for p < .001, ** for p < .01, and * for p < .05

Accuracy of Fuzzy Lexical Matching. The fuzzy lexical matching system pro-

duced a grand mean accuracy of .971. This high level of accuracy is not unexpected, as

the MSCS version of the FLM system was designed to achieve 100% accuracy at the ex-

pense of efficiency. Language-country membership explains only 3.7% of the variation in

accuracy with FLM. This suggests that a FLM system can be used for different languages

and countries, regardless of their linguistic variation, similar to the approach building on

XLM-R. The matching procedure already takes into account linguistic variance when the

text response receives an automatic score. Therefore, it is not surprising that the effect of

linguistic variance is not significant in both M2 and M3. The linguistic variance explains

only about 1% of the accuracy of the FLM system.
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Discussion

Conclusion

The aim of the current project was (1) to analyze the performance of automatic scoring

of text responses in the 2016 ePIRLS, (2) to assess the linguistic variance in text responses as

a pivotal determinant of automatic scoring performance, and (3) to investigate the impacts

of student and item characteristics on the linguistic variance, and in turn, automatic scoring

performance. For automatic scoring, we used two systems: fuzzy lexical matching (FLM)

and supervised classifiers based on semantics (XLM-R). Fuzzy lexical matching prioritizes

the accuracy (in theory, 100%), and a stricter version (MSCS) has been operationalized

in the PISA since the 2018 cycle. However, this system cannot score all text responses.

As effective and simple it is for items that elicit a high degree of regularity in responses,

it is equally limited in its application to items with medium and low levels of regularity.

Therefore, we used efficiency (i.e., the proportion of text responses that are scored by ma-

chine) as a major metric to evaluate the performance of this system, indicating the potential

for manual effort reduction. The second system, supervised classifiers based on semantics,

extracted semantic representational features by employing a pre-trained multilingual deep

neural network (XLM-R), followed by model training with support vector machines. With

this approach, all text responses are scored with varying accuracy. Thus, performance of

this system was evaluated regarding agreement with human raters (i.e., quadratic weighted

kappa and exact agreement rates). In the process of automatic scoring, we view linguis-

tic variance as a pivotal determinant that impacts the performance of automatic scoring

systems, along with other instrument-related and student-related factors. Therefore, we

computed a modified type-token ratio, STTR, as a measure of linguistic variance to en-

able comparison across groups of students with similar characteristics such as gender, L1/L2

speaker status, and item-level score, taking into account items and language-country groups.

We then analyzed corresponding relationships using multiple multilevel models. The results

can be summarized as follows.

First, the accuracy of the automatic scoring with XLM-R was satisfactory, with an

average agreement across all items and language groups of κ = .755. Out of a total of 50
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items, 36 show an agreement of at least κ ≥ .650, 22 items of at least κ ≥ .750, and 11 items

of at least κ ≥ .850. Automatic scoring with FLM showed a decent performance in efficiency,

ranging from 17.1% to 37.85%, with a median of 26.1%. This suggests that approximately

75% of text responses still require scoring work from humans but also that about 25% of

manual scoring effort could be saved. Although not directly comparable, the reduction of

scoring work in the 2016 ePIRLS is slightly higher than that of the operationalized system

(which is a stricter version of FLM) in PISA 2022, where the median was reported to be

21.8% for the reading domain (OECD, 2023).

Second, when the linguistic variance was computed at the item level for each language-

country group (STTR(1)
ig ), 19.9% of linguistic variance was explained by language-country

groups. When computing linguistic variance at a more granular level based on student char-

acteristics (STTR(2)
pig), the total variance was decomposed into 9.3% of between-language-

country groups and 48.2% of between-item, within-language-country groups. Although not

detailed in the paper, an alternative cross-classified structure was attempted (Shin, Rabe-

Hesketh, & Wilson, 2019), where students nested in items and nested in countries, while

items were crossed with countries. The results provided a similar story, showing 9.0% by

language-country-specific factors, while 61.1% by item-specific factors.

Third, instrument-related characteristics considered in this study were mostly significant

to the linguistic variance. They include the cognitive process being measured by an item, the

passage to which it belongs, the position of the item within the passage, the maximum score

points, and the item’s difficulty. When combined, these characteristics could explain 50.1%

of item-level linguistic variance (STTR(1)
ig ) and 29.0% of student-level linguistic variance

(STTR(2)
pig). Among student-related characteristics, gender, and the item-level score were

statistically significant, while L1/L2 status did not have a significant effect. In the most

general model that specified both instrument-related and student-related characteristics

(M4 in Table 4), 51.1% of linguistic variance was explained. When combined with random

effects from items and language-country groups, 83.7% of the total linguistic variance was

explained.

Fourth, importantly, language-country groups were only marginally related to the perfor-
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mance of automatic scoring; 3.5% for the XLM-R’s accuracy and 7.3% of FLM’s efficiency.7

In contrast, it should be noted that the corresponding values for explaining the item-level

linguistic variance (STTR(1)
ig ) were 19.9% and 48.2%, respectively, for student-level linguis-

tic variance (STTR(2)
pig). These quantities confirm the potential to use automatic scoring

models accurately and efficiently in a multilingual context across countries, regardless of

their linguistic variances.

Lastly, as hypothesized in the study, linguistic variance exhibited significant negative

impacts to the performances of automatic scoring. The increase of linguistic variance was

significantly associated with the decrease of accuracy of XLM-R (Table 5) and the efficiency

of FLM (Table 6). In contrast, because FLM took into account linguistic variance in the

matching procedure, linguistic variance did not impact the accuracy of FLM (Table 7).

Implications for Operational Use

The feasibility of operational automatic scoring remains a challenge for large-scale inter-

national assessments such as PIRLS. Barriers to automatic scoring include the multilingual

nature of text responses in international studies, coupled with the requirement for language-

dependent natural language processing resources, and the effort required to develop, quality

control, and maintain automatic scoring models that meet satisfactory levels of accuracy.

Moreover, the dynamic developments of large-scale assessments, such as their frameworks

and new items, can hamper its re-usability. Given the high stakes of PIRLS assessment

results at the policy level, the operationalization of the automatic scoring system requires a

careful approach that can ensure the reliability, validity, and comparability of results across

participating countries and cycles. In this study, we attempted two complementary auto-

matic scoring approaches; one that prioritizes accuracy at the expense of not scoring some

text responses by machine (FLM) and another that utilizes state-of-the-art multilingual

natural language processing technologies. In the light of the result highlights elaborated on

above, we conclude the following implications for the operational use of automatic scoring.

First, two automatic scoring models, FLM and XLM-R, empirically demonstrated their

potential for automatic scoring of the 2016 ePIRLS data in terms of efficiency and ac-
7The corresponding value for the accuracy of the FLM was 3.7%, which is close to the 3.5% of the XLM-R

approach.
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curacy. The amount of saved human resources by implementing a simple system, such

as FLM, would substantially reduce costs and required time for scoring, and, moreover,

improve scoring quality. Because the two approaches were designed to be largely language-

agnostic (FLM) and multilingual (XLM-R), the extent to which the language-country group

explained the performance of the automatic scoring models was very small. In contrast to

the ability of language-country groups to explain linguistic variation, such results made

it clear that these two automatic scoring models can be used independently of linguistic

variation for the examined test languages, which covered a wide range of language families

and scripts.

Second, an ensemble framework that implements FLM and XLM-R in a sequential

manner can be considered for operationalization. To achieve the highest level of reliability,

validity, and comparability of automatically scored responses, FLM could first be imple-

mented on the entire set of incoming unscored responses for trend or linking items. The

remaining, unmatched text responses written in different languages, both for trend/linking

and new items, could then be scored by a system such as XLM-R. The current evaluation

of XLM-R reported in this study has not yet implemented fine-tuning, but has included

such noisy data that it contains a substantial amount of misclassifications. Thus, if there

is operational room to develop pipelines for fine-tuning XLM-R system and improving the

quality of training data, the performance of XLM-R system can be greatly improved.

Third, as hypothesized in our study according to Horbach and Zesch (2019), linguistic

variance turned out to be a pivotal factor affecting the performance of automatic scoring.

Different components of linguistic variances were shown to be affected by certain student-

and, more importantly, instrument-related characteristics. This allows a-priori judgments

which items may be suited for automatic scoring and which ones should remain in the

manual scoring process as the development of accurate classifiers might currently not be

possible yet.

Fourth, since the study revealed a significant number of inconsistent human scores, there

is an opportunity for two additional improvements. First, the operational use of automatic

scoring could improve scoring quality by highlighting inconsistencies within and between

human raters and reducing the number of text responses that need to be scored manually.



AUTOMATIC SCORING AND LINGUISTIC VARIANCE 37

Similarly, calibration sessions at the beginning of scoring sessions could be improved by

selecting critical examples from the empirical data. On the other hand, both automatic

scoring systems could help to identify and correct gaps in the scoring guides, if common

responses are not covered at all as reference texts, or if very similar responses are coded

inconsistently, which might indicate unclear scoring guides.

Limitations

The present study revealed novel findings but has a number of limitations. First, we

restricted the multilevel model specifications to main effects for ease of interpretation. How-

ever, more complicated relationships may be of interest, including interaction terms between

student-related, item-related, or cross-student item-related characteristics. In addition, ran-

dom slopes may be considered if the effects of some item or student characteristics are

expected to vary across language-country groups.

Currently, since our main focus was to decompose the variance by different clusters, and

there was no software package available for fitting multilevel beta regression models, we

decided to treat the outcome variable as a continuous variable, which allowed for multilevel

analyses. More fundamentally, given that all outcome variables are proportions between

0 and 1, a beta regression would have been a better methodological choice. Alternatively,

with respect to the distribution of the outcome variable, zero-inflated and hurdle models

(Lambert, 1992) may be more appropriate, using the flexible Bayesian approach provided

in the Rstan package (Stan Development Team, 2023).

Next, we conducted a limited examination of the effects of student characteristics. In

particular, students’ overall performance score or proficiency level was not included in our

analyses. This is because including this variable in addition to gender, L1/L2 speaker

status, and item-level score made the calculation of STTR(2)
pig extremely sparse. In addition,

student-related characteristics could not be specified when examining the effects of linguistic

variance on automatic scoring performance (see relevant Tables 5, 6, and 7). All types of

three-level models, including variance-components model, were attempted, but all failed

to converge. Therefore, student-related factors were not controlled for in modeling the

relationship between linguistic variance and automatic scoring performance. To this end,
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more sophisticated modeling strategies can be explored that would ultimately help address

issues of fairness in automatic scoring.

The texts were processed in their raw form for the XLM-R analyses, without any prepro-

cessing such as decapitalization or spelling error correction. Due to the flexible tokenization

of the RoBERTa language model, no information was lost in this process. However, text

responses may then be treated differently, especially if the texts contain deviating spellings,

such as misspellings or uppercase letters only, leading to divergent semantic vector rep-

resentations. Given the high frequency of misspellings due to the low age of the target

population, it cannot be ruled out that preprocessing, especially spelling correction, could

increase the reliability of automatic scoring of some items and, thus, improve the scoring

quality.

Scoring performance was assessed regarding the alignment of automatic and manual

scores. Since responses can be scored differently by two raters due to distinct interpretations,

further inter-rater reliability measures are essential to compare machine-human agreement

with human-to-human agreement. Responses poorly coded by machines, potentially due

to complex linguistic structures, might also be inconsistently scored by human raters, a

situation likely in cases of polytomously scored responses. Hence, an inter-rater reliability

study might provide a benchmark of human scoring for interpreting the performance of

corresponding automatic scoring.

Moreover, STTR is only one potential operationalization of linguistic variance of many

and focuses on relative lexical diversity. In follow-up analyses, we will consider other op-

erationalizations such as pairwise distances and semantic variance. Finally, the significant

number of human misclassifications, among others apparent in the large number of empty

responses with positive scores or deviating scores for identical responses, hampered the

training and evaluation of both automatic scoring systems to a certain extent.
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